Books
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/3
Books
Browse
3 results
Search Results
Item Mathematical model and analysis of the soil-transmitted helminth infections with optimal control(Springer Science and Business Media LLC, 2024-02) Festus Abiodun Oguntolu; Olumuyiwa James Peter; Abubakar Yusuf; B. I. Omede; G. Bolarin; T. A. AyoolaSoil-transmitted helminth diseases are highly prevalent in impoverished regions and pose a significant health burden on the global population. These diseases are primarily transmitted through the contamination of soil with human faces containing parasite eggs. This study presents a novel deterministic mathematical model to comprehensively investigate the dynamics of helminth infection transmission through the soil. The mathematical model exhibits two equilibrium points: the diseases-free equilibrium point (DFE) and the endemic equilibrium point (EEP). The DFE is proven to be locally and globally asymptotically stable when the basic reproduction number is less than one, indicating the potential for disease eradication. Conversely, the EEP is locally asymptotically stable when the basic reproduction number exceeds unity, representing a persistent endemic state. To explore effective intervention strategies for controlling the spread of these infections, optimal control theory is applied. The study incorporates two time-varying control variables derived from sensitivity analysis: the rate of hygiene consciousness in the susceptible class and the rate of hygiene consciousness in the infectious class. Numerical simulations demonstrate that implementing optimal control strategies can successfully curb and mitigate soil-transmitted helminth infections. Overall, this research highlights the importance of proactive and targeted interventions, emphasizing the significance of hygiene education and awareness campaigns. By implementing optimal control measures based on the proposed strategies, the burden of soil-transmitted helminth diseases can be significantly reduced, improving public health in affected regions.Item Mathematical model for the control of lymphatic filariasis transmission dynamics(SCIK Publishing Corporation, 2021-02-23) Festus Abiodun Oguntolu; Gbolahan Bolarin; Olumuyiwa James Peter; Abdullah Idris Enagi; Kayode OshinubiIn this paper, a mathematical model for the transmission dynamics of lymphatic filariasis is presented by incorporating the infected without symptom, the infected with symptom and treatment compartments. The model is shown to have two equilibrium states: the disease-free equilibrium (DFE) and the endemic equilibrium states. An explicit formula for the effective reproduction number was obtained in terms of the demographic and epidemiological parameters of the model. Using the method of linearization, the disease-free equilibrium state was found to be locally asymptotically stable if the basic reproduction number is less than unity. By constructing a suitable Lyapunov function, the disease-free equilibrium state was found to be globally asymptotically stable. This means that lymphatic filariasis could be put under control in a population when the effective reproduction number is less than one. The endemic equilibrium state was found to be locally asymptotically stable. By constructing yet another Lyapunov function, the endemic equilibrium state was found to be globally asymptotically stable under certain conditions. Sensitivity analysis was carried out on the effective reproduction number, the most sensitive parameters were the treatment rate of human population and the infected rate of human population. Results from the simulation carried out showed that treatment level coverage of human population should target a success rate of 75% for LF to be under control in the population.Item Mathematical Model of COVID-19 Pandemic with Double Dose Vaccination(Springer Science and Business Media LLC, 2023-03-06) Olumuyiwa James Peter; Hasan S. Panigoro; Afeez Abidemi; Mayowa M. Ojo; Festus Abiodun OguntoluThis paper is concerned with the formulation and analysis of an epidemic model of COVID-19 governed by an eight-dimensional system of ordinary differential equations, by taking into account the first dose and the second dose of vaccinated individuals in the population. The developed model is analyzed and the threshold quantity known as the control reproduction number is obtained. We investigate the equilibrium stability of the system, and the COVID-free equilibrium is said to be locally asymptotically stable when the control reproduction number is less than unity, and unstable otherwise. Using the least-squares method, the model is calibrated based on the cumulative number of COVID-19 reported cases and available information about the mass vaccine administration in Malaysia between the 24th of February 2021 and February 2022. Following the model fitting and estimation of the parameter values, a global sensitivity analysis was performed by using the Partial Rank Correlation Coefficient (PRCC) to determine the most influential parameters on the threshold quantities. The result shows that the effective transmission rate, the rate of first vaccine dose, the second dose vaccination rate and the recovery rate due to the second dose of vaccination are the most influential of all the model parameters. We further investigate the impact of these parameters by performing a numerical simulation on the developed COVID-19 model. The result of the study shows that adhering to the preventive measures has a huge impact on reducing the spread of the disease in the population. Particularly, an increase in both the first and second dose vaccination rates reduces the number of infected individuals, thus reducing the disease burden in the population.