School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Stability and optimal control analysis of an SCIR epidemic model
    (SCIK Publishing Corporation, 2020-10-16) Olumuyiwa James Peter; Ratchada Viriyapong; Festus Abiodun Oguntolu; Pensiri Yosyingyong; Helen Olaronke Edogbanya; Michael Oyelami Ajisope
    In this paper, we proposed a deterministic model of SCIR governed by a system of nonlinear differential equations. Two equilibria (disease-free and endemic) are obtained and the basic reproduction number R0 is calculated. If R0 is less than one, then the disease-free equilibrium state is globally stable i.e. the disease will be eradicated eventually. However, when R0 is greater than unity, the disease persists and the endemic equilibrium point is globally stable. Furthermore, the optimal control problem is applied into the model. The focus of this study is to determine what control method can be implemented to significantly slow the incidence of the epidemic disease, therefore we take into account various possible combinations of such three controls which are prevention via proper hygiene, screening of the infected carriers which enable them to know their health conditions and to go for early treatment and treatment of the infected individuals. The possible strategies of using combinations of the three controls on the spread of the disease, one at a time or two at a time is also discussed. Our numerical analysis of the optimal approach suggests that the best method is to incorporate all three controls in order to control the disease epidemic.
  • Item
    APPROXIMATE SOLUTIONS FOR MATHEMATICAL MODELLING OF MONKEY POX VIRUS INCORPORATING QUARANTINE CLASS
    (Transactions of the Nigerian Association of Mathematical Physics, 2021-03-14) Somma S. A.; Akinwande N. I.; Ashezua T. T.; Nyor N.; JIMOH, OMANANYI RAZAQ; Zhiri A. B.
    In this paper we used Homotopy Perturbation Method (HPM) and Adomian Decomposition Method (ADM) to solve the mathematical modeling of Monkeypox virus. The solutions of HPM and (ADM) obtained were validated numerically with the Runge-Kutta-Fehlberg 4-5th order built-in in Maple software. The solutions were also presented graphically to give more insight into the dynamics of the monkeypox virus. It was observed that the two solutions were in agreement with each other and also with Runge-Kutta.
  • Item
    APPROXIMATE SOLUTIONS FOR MATHEMATICAL MODELLING OF MONKEY POX VIRUS INCORPORATING QUARANTINE CLASS
    (Transactions of the Nigerian Association of Mathematical Physics, 2021-03-30) Somma, Samuel Abu; Akinwande, N. I.,; Ashezua, T. T.; Nyor, N.; Jimoh, O. R.; Zhiri, A. B.
    In this paper we used Homotopy Perturbation Method (HPM) and Adomian Decomposition Method (ADM) to solve the mathematical modeling of Monkeypox virus. The solutions of HPM and (ADM) obtained were validated numerically with the Runge-Kutta-Fehlberg 4-5th order built-in in Maple software. The solutions were also presented graphically to give more insight into the dynamics of the monkeypox virus. It was observed that the two solutions were in agreement with each other and also with Runge-Kutta.