School of Physical Sciences (SPS)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36
School of Physical Sciences (SPS)
Browse
5 results
Search Results
Item STABILITY AND BIFURCATION ANALYSIS OF ENDEMIC EQUILIBRIUM OF A MATHEMATICAL MODEL OF YELLOW FEVER INCORPORATING SECONDARY HOST(Transactions of the Nigerian Association of Mathematical Physics, 2018-03-10) Somma, Samuel Abu; Akinwande, N. I.; Jiya, M.; Abdulrahman, S.; Ogwumu, O. D.In this paper we used the Centre Manifold theorem to analyzed the local stability of Endemic Equilibrium (EE). We obtained the endemic equilibrium point in terms of forces of infection and use it to analyze for the bifurcation of the model. We carried out the bifurcation analysis of the model with four forces of infection which resulted into bifurcation diagram. The forces of infection of vector-primary host and vector secondary host transmissions were plotted against basic reproduction number. The bifurcation diagram revealed that the model exhibit forward bifurcation.Item Stability and Bifurcation Analysis of a Mathematical Modeling of Measles Incorporating Vitamin A Supplement(Sule Lamido University Journal of Science and Technology (SLUJST), 2021-01-20) Somma, Samul Abu; Akinwande, N. I.; Gana, P.; Ogwumu, O. D.; Ashezua, T. T.; Eguda, F. Y.Measles is transmissible disease that is common among children. The death caused by measles among children of five years and below is alarming in spite of the safe and effective vaccine. It has been discovered that Vitamin A Deficiency (VAD) in children increases their chances of measles infection. In this paper, the mathematical model of measles incorporating Vitamin A supplement as treatment was formulated and analyzed. The equilibrium points are obtained and analyzed for stability. Bifurcation and sensitivity analyses were carried out to gain further insight into the spread and control of measles. The stability analysis revealed that Disease Free Equilibrium (DFE) is stable if Reproduction Number, 0 R 0 1 . The bifurcation analysis revealed forward bifurcation while the sensitivity analysis shows the most sensitive parameters of the model that are responsible for the spread and control of the diseases. The effect of sensitive parameters on Basic R were presented graphically. Vaccination, recovery and Vitamin A supplement rates have been shown from the graphical presentation as the important parameter that will eradicate the measles from the population while contact and loss of immunity rates have shown that measles will persist in the population. People should be sensitized on the danger of living with infected persons. Government should do more in routine immunization and administration of Vitamin A Supplement.Item Bifurcation Analysis on the Mathematical Model of Measles Disease Dynamics(Universal Journal of Applied Mathematics, 2013-12-12) Abubakar, Samuel; Akinwande, N. I.; Abdulrahman, S.; Oguntolu, F. A.In this paper we proposed a Mathematical model of Measles disease dynamics. The Disease Free Equilibrium (DFE) state, Endemic Equilibrium (EE) states and the characteristic equation of the model were obtained. The condition for the stability of the Disease Free equilibrium state was obtained. We analyze the bifurcation of the Disease Free Equilibrium (DFE) and the result of the analysis was presented in a tabular form.Item COA-SOWUNMI'S LEMMA AND ITS APPLICATION TO THE STABILITY ANALYSIS OF EQUILIBRIUM STATES OF THE NON-LINEAR AGE-STRUCTURED POPULATION MODEL(International Journal of Mathematics and Physical Sciences Research, 0205-04-10) Akinwande, N. I.; Somma, Samuel AbuAbstract: In this work, we present a result in the form of a lemma which we name COA-Sowunmi’s Lemma, its proof and application to the stability analysis of the transcendental characteristics equation arising from the perturbation of the steady state of the non-linear age-structured population model of Gurtin and MacCamy [11]. Necessary condition for the asymptotic stability of the equilibrium state of the model is obtained in the form of constrained inequality on the vital parameters of the model. The result obtained is then compared with that of an earlier work by the [4].Item Stability Analysis of the Disease Free Equilibrium State of a Mathematical Model of Ebola Fever Disease Epidemic(. International Journal of Innovation in Science and Mathematics (IJISM), 2015-06-01) Abah, R. T.,; Akinwande, N. I.; Enagi, I. A.; Kuta, F. A.,; Abdulrahaman, S.; Somma, Samuel AbuEbola fever has been a major cause of death in recent times. It has claimed thousands of lives in West Africa since 2014 till date. Very few mathematical models have been developed to study its transmission dynamics. In this paper the stability analysis of the disease free equilibrium state of a mathematical model of Ebola Fever disease epidemic were carried out.