School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Homotopy Perturbation Method (HPM) for Solving Mathematical Modeling of MonkeyPox Virus
    (National Mathematical Centre (NMC) Journal of Mathematical Sciences, 2020-03-03) Somma, Samuel Abu; Ayegbusi, F. D.; Gana, P.; Adama, P. W.; Abdurrahman, N. O.; Eguda, F. Y.
    Mathematical modeling of real life problems such as transmission dynamics of infectious diseases resulted into non-linear differential equations which make it difficult to solve and have exact solution. Consequently, semi-analytical and numerical methods are used to solve these model equations. In this paper we used Homotopy Perturbation Method (HPM) to solve the mathematical modeling of Monkeypox virus. The solutions of HPM were validated numerically with the Runge-Kutta-Fehlberg 4-5th order built-in in Maple software. It was observed that the two solutions were in agreement with each other.
  • Item
    APPROXIMATE SOLUTIONS FOR MATHEMATICAL MODELLING OF MONKEY POX VIRUS INCORPORATING QUARANTINE CLASS
    (Transactions of the Nigerian Association of Mathematical Physics, 2021-03-30) Somma, Samuel Abu; Akinwande, N. I.,; Ashezua, T. T.; Nyor, N.; Jimoh, O. R.; Zhiri, A. B.
    In this paper we used Homotopy Perturbation Method (HPM) and Adomian Decomposition Method (ADM) to solve the mathematical modeling of Monkeypox virus. The solutions of HPM and (ADM) obtained were validated numerically with the Runge-Kutta-Fehlberg 4-5th order built-in in Maple software. The solutions were also presented graphically to give more insight into the dynamics of the monkeypox virus. It was observed that the two solutions were in agreement with each other and also with Runge-Kutta.