School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    STABILITY AND BIFURCATION ANALYSIS OF ENDEMIC EQUILIBRIUM OF A MATHEMATICAL MODEL OF YELLOW FEVER INCORPORATING SECONDARY HOST
    (Transactions of the Nigerian Association of Mathematical Physics, 2018-03-10) Somma, Samuel Abu; Akinwande, N. I.; Jiya, M.; Abdulrahman, S.; Ogwumu, O. D.
    In this paper we used the Centre Manifold theorem to analyzed the local stability of Endemic Equilibrium (EE). We obtained the endemic equilibrium point in terms of forces of infection and use it to analyze for the bifurcation of the model. We carried out the bifurcation analysis of the model with four forces of infection which resulted into bifurcation diagram. The forces of infection of vector-primary host and vector secondary host transmissions were plotted against basic reproduction number. The bifurcation diagram revealed that the model exhibit forward bifurcation.
  • Item
    Stability and Bifurcation Analysis of a Mathematical Modeling of Measles Incorporating Vitamin A Supplement
    (Sule Lamido University Journal of Science and Technology (SLUJST), 2021-01-20) Somma, Samul Abu; Akinwande, N. I.; Gana, P.; Ogwumu, O. D.; Ashezua, T. T.; Eguda, F. Y.
    Measles is transmissible disease that is common among children. The death caused by measles among children of five years and below is alarming in spite of the safe and effective vaccine. It has been discovered that Vitamin A Deficiency (VAD) in children increases their chances of measles infection. In this paper, the mathematical model of measles incorporating Vitamin A supplement as treatment was formulated and analyzed. The equilibrium points are obtained and analyzed for stability. Bifurcation and sensitivity analyses were carried out to gain further insight into the spread and control of measles. The stability analysis revealed that Disease Free Equilibrium (DFE) is stable if Reproduction Number, 0 R 0  1 . The bifurcation analysis revealed forward bifurcation while the sensitivity analysis shows the most sensitive parameters of the model that are responsible for the spread and control of the diseases. The effect of sensitive parameters on Basic R were presented graphically. Vaccination, recovery and Vitamin A supplement rates have been shown from the graphical presentation as the important parameter that will eradicate the measles from the population while contact and loss of immunity rates have shown that measles will persist in the population. People should be sensitized on the danger of living with infected persons. Government should do more in routine immunization and administration of Vitamin A Supplement.