School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    APPROXIMATE SOLUTIONS FOR MATHEMATICAL MODELLING OF MONKEY POX VIRUS INCORPORATING QUARANTINE CLASS
    (Transactions of the Nigerian Association of Mathematical Physics, 2021-03-30) Somma, Samuel Abu; Akinwande, N. I.,; Ashezua, T. T.; Nyor, N.; Jimoh, O. R.; Zhiri, A. B.
    In this paper we used Homotopy Perturbation Method (HPM) and Adomian Decomposition Method (ADM) to solve the mathematical modeling of Monkeypox virus. The solutions of HPM and (ADM) obtained were validated numerically with the Runge-Kutta-Fehlberg 4-5th order built-in in Maple software. The solutions were also presented graphically to give more insight into the dynamics of the monkeypox virus. It was observed that the two solutions were in agreement with each other and also with Runge-Kutta.
  • Item
    A Mathematical Study of Contaminant Transport with First-order Decay and Time-dependent Source Concentration in an Aquifer
    (Universal Journal of Applied Mathematics, 2013-11-05) Olayiwola, R. O.; Jimoh, O. R.; Yusuf, A.; Abubakar, Samuel
    A mathematical model describing the transport of a conservative contaminant through a homogeneous finite aquifer under transient flow is presented. We assume the aquifer is subjected to contamination due to the time-dependent source concentration. Both the sinusoidally varying and exponentially decreasing forms of seepage velocity are considered for the purposes of studying seasonal variation problems. We use the parameter-expanding method and seek direct eigenfunctions expansion technique to obtain analytical solution of the model. The results are presented graphically and discussed. It is discovered that the contaminant concentration decreases along temporal and spatial directions as initial dispersion coefficient increases and initial groundwater velocity decreases. This concentration decreases as time increases and differs at each point in the domain.