School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Stability and Bifurcation Analysis of a Mathematical Modeling of Measles Incorporating Vitamin A Supplement
    (Sule Lamido University Journal of Science and Technology (SLUJST), 2021-01-20) Somma, Samul Abu; Akinwande, N. I.; Gana, P.; Ogwumu, O. D.; Ashezua, T. T.; Eguda, F. Y.
    Measles is transmissible disease that is common among children. The death caused by measles among children of five years and below is alarming in spite of the safe and effective vaccine. It has been discovered that Vitamin A Deficiency (VAD) in children increases their chances of measles infection. In this paper, the mathematical model of measles incorporating Vitamin A supplement as treatment was formulated and analyzed. The equilibrium points are obtained and analyzed for stability. Bifurcation and sensitivity analyses were carried out to gain further insight into the spread and control of measles. The stability analysis revealed that Disease Free Equilibrium (DFE) is stable if Reproduction Number, 0 R 0  1 . The bifurcation analysis revealed forward bifurcation while the sensitivity analysis shows the most sensitive parameters of the model that are responsible for the spread and control of the diseases. The effect of sensitive parameters on Basic R were presented graphically. Vaccination, recovery and Vitamin A supplement rates have been shown from the graphical presentation as the important parameter that will eradicate the measles from the population while contact and loss of immunity rates have shown that measles will persist in the population. People should be sensitized on the danger of living with infected persons. Government should do more in routine immunization and administration of Vitamin A Supplement.
  • Item
    Homotopy Perturbation Method (HPM) for Solving Mathematical Modeling of MonkeyPox Virus
    (National Mathematical Centre (NMC) Journal of Mathematical Sciences, 2020-03-03) Somma, Samuel Abu; Ayegbusi, F. D.; Gana, P.; Adama, P. W.; Abdurrahman, N. O.; Eguda, F. Y.
    Mathematical modeling of real life problems such as transmission dynamics of infectious diseases resulted into non-linear differential equations which make it difficult to solve and have exact solution. Consequently, semi-analytical and numerical methods are used to solve these model equations. In this paper we used Homotopy Perturbation Method (HPM) to solve the mathematical modeling of Monkeypox virus. The solutions of HPM were validated numerically with the Runge-Kutta-Fehlberg 4-5th order built-in in Maple software. It was observed that the two solutions were in agreement with each other.
  • Item
    Application of Adomian Decomposition Method (ADM) for Solving Mathematical Model of Measles
    (National Mathematical Centre (NMC) Journal of Mathematical Sciences,, 2021-03-03) Somma, Samuel Abu; Ayegbusi, F. D.; Gana, P.; Adama, P. W.; Abdurrahman, N. O.; Eguda F. Y.
    Adomian Decomposition Method (ADM) is a semi-analytical method that give the approximate solution of the linear and non-linear differential equations. In this paper the Adomian Decomposition Method (ADM) was used to solve the mathematical model of measles. The ADM solution was validated with Runge-Kutta built-in in Maple software. The graphical solutions show the decrease and increase in the classes with time. It was revealed from the graphical solution that the ADM is in agreement with Runge-Kutta. Keywords: Mathematical modeling, Adomian Decomposition Method, numerical solution
  • Item
    Modified Maternally-Derived-Immunity Susceptible Infectious Recovered (MSIR) Model of Infectious Disease: Existence of Equilibrium and Basic Reproduction Number
    (Nigerian Journal of Technological Research, 2015-06-03) Somma, Samuel Abu; Akinwande, N. I.; Gana, P.; Abdulrahaman, S.; Ashezua, T. T.
    In this paper we modified the MSIR Model by adding the vaccination rate and death rate due to the disease to the existing MSIR model. We verified the positivity of the solution and obtained the Disease Free Equilibrium (DFE) of the model. We also determined the basic reproduction number using next generation Matrix and Jacobian matrix method.