School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/30

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Population dynamics of a mathematical model for Campylobacteriosis
    (Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Ashezua, T. T.; Salemkaan, M. T.; Somma, Samuel Abu
    The bacterium campylobacter is the cause of campylobacteriosis, a major cause of foodborne illness that goes by the most common name for diarrheal illnesses. This paper develops and analyzes a new mathematical model for campylobacteriosis. It is demonstrated that in cases where the corresponding reproduction number is smaller than unity, the model's disease-free equilibrium is both locally and globally stable. The numerical simulation results indicate that increasing the treatment rate for both symptomatic and asymptomatic disease-infected individuals resulted in a decrease in the number of asymptomatic and symptomatic individuals, respectively, and a rise in the population's number of recovered individuals.
  • Item
    Homotopy Perturbation Analysis of the Spread and Control of Lassa Fever
    (Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Tsado, D.; Oguntolu, F. A.; Somma, Samuel Abu
    Lassa fever, a viral infection transmitted by rodents, has emerged as a significant global health concern in recent times. It continues to garner significant attention daily basis owing to its rapid transmission and deadly nature. In this study, the Homotopy Perturbation Analysis was conducted to examine the spread and control of Lassa fever. The human population was categorized into susceptible, exposed, infected, and recovered compartments, while the rodent population was divided into susceptible and infected recovered compartments. By applying the Homotopy Perturbation Analysis to the nonlinear differential equations associated with these compartments, we were able to obtain the analytical solution for the spread and control of Lassa fever. The nonlinear differential equations were integrated into the Homotopy Perturbation framework and solved to form a power series solution. Finally, the final approximate solutions were obtained and simulation results were generated from the general solution graphically.
  • Item
    Modelling the Impacts of Media Campaign and Double Dose Vaccination in Controlling COVID-19 in Nigeria.
    (Alexandria Engineering Journal, 2023-02-21) Akinwande, N. I.; Somma, Samuel Abu; Olayiwola, R. O.; Ashezua, T. T.; Gweryina, R. I.; Oguntolu, F. A.; Abdurahman, O. N.
    Corona virus disease (COVID-19) is a lethal disease that poses public health challenge in both developed and developing countries of the world. Owing to the recent ongoing clinical use of COVID-19 vaccines and noncompliance to COVID-19 health protocols, this study presents a deterministic model with an optimal control problem for assessing the community-level impact of media campaign and double-dose vaccination on the transmission and control of COVID-19. Detailed analysis of the model shows that, using the Lyapunov function theory and the theory of centre manifold, the dynamics of the model is determined essentially by the control reproduction number (𝑅𝑚𝑣). Consequently, the model undergoes the phenomenon of forward bifurcation in the absence of the double dose vaccination effects, where the global disease-free equilibrium is obtained whenever 𝑅𝑚𝑣 ≤ 1. Numerical simulations of the model using data relevant to the transmission dynamics of the disease in Nigeria, show that, certain values of the basic reproduction number ((𝑅0 ≥ 7)) may not prevent the spread of the pandemic even if 100% media compliance is achieved. Nevertheless, with assumed 75% (at 𝑅0 = 4)) media efficacy of double dose vaccination, the community herd immunity to the disease can be attained. Furthermore, Pontryagin’s maximum principle was used for the analysis of the optimized model by which necessary conditions for optimal controls were obtained. In addition, the optimal simulation results reveal that, for situations where the cost of implementing the controls (media campaign and double dose vaccination) considered in this study is low, allocating resources to media campaign-only strategy is more effective than allocating them to a firstdose vaccination strategy. More so, as expected, the combined media campaign-double dose vaccination strategy yields a higher population-level impact than the media campaign-only strategy, double-dose vaccination strategy or media campaign-first dose vaccination strategy.