Journal Articles

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/1

Journal Articles

Browse

Search Results

Now showing 1 - 10 of 61
  • Item
    Perceived Influence of ICT and Work Environmental Productivity of Library Personnel in Colleges of Education in Niger State, Nigeria
    (A Publication of the University Library, Nasarawa State University, Keffi., 2023-06-24) DOGARA Ladan, ABUBAKAR Fati, ANGO Abubakar Aliyu, AKAWULami, YUSUF Ladan Fatima, ADAMU Mohammed Saba
    This study investigated the perceived influence of Information Communication Technology and the work environment on the productivity of library personnel in college education libraries in Niger State, Nigeria. Four research objectives guided the study. A descriptive survey research design was used for this study. The population of the study comprised one hundred and two (102) library personnel in the two colleges of education libraries in Niger State, Nigeria. A close-ended structured questionnaire was used as a data collection instrument. Mean, and standard deviation were statistical tools used for data analysis. Findings showed that the level of productivity is low, the perceived influence of ICT is moderate, and the perceived influence of the work environment of library personnel in colleges of education libraries in Niger State, Nigeria is moderate. The study concluded that the low level of productivity of library personnel could be attributed to a poor working environment and a lack of application of ICT in library operations. The study recommended that the Management of colleges of education in Niger State, Nigeria, should make their libraries more conducive and comfortable for both staff and users, provide more opportunities for ICT training of staff, provide alternative electricity power supply, adequate provision of ICT facilities in their libraries for effective application of ICTs in library operations, provide good lighting system, adequate spaces and furniture and good ventilation system in their libraries for better productivity.
  • Item
    Hydraulic Transient Analysis of a Petroleum Pipeline Transporting Dual Purpose Kerosene Using Modelling and Simulation Approach
    (Premier Journal of Engineering and Applied Sciences, 2020-04-21) Muhammad, .A. B.; Nasir, .A.; Ayo, .S. A.; Bori Ige
    Hydraulic transient analysis of a pipeline transporting dual purpose kerosene (DPK) was carried out in this research using simulation approach. Many petroleum pump stations and pipelines experience leakages and failures at their nodes due to changes in flow parameters that lead to hydraulic transient. Such types of unsteady situations are encountered frequently in pipelines where the valves are suddenly closed. WANDA Transient 4.5.1210 commercial software was used for the analysis of hydraulic transient. Variation in pressures and discharges with respect to time after the closure of a gate valve at the downstream of a pipeline were observed. It was observed in the study that pressure at node F rise significantly up to about 1354 kPa against the initial inlet pressure of 120 kPa due to the instantaneous valve closure and it was also observed that pressure at node B drops to a negative pressure of -101 kPa and hence the formation of cavitations at that node B and pipe P2. The analysis showed that the magnitude of the pressure surge decreases as the valve closure is increased. The research recommended that surge tanks should be installed at node F to stabilize the pressure surge and also air vessels are to be installed at nodes B to curtail damages due to cavitations.
  • Item
    Investigation of the Effects of Hydraulic Transient due to Instantaneous Valve Closure in a Petroleum Pipeline
    (NIPES Journal of Science and Technology Research, 2020-06-01) Muhammad, .A. B.; Nasir, .A.; Ayo, .S. A.; Bori Ige
    Pressure surge analysis of petroleum pipeline transporting automotive gas oil (AGO) also known as Diesel oil was carried out in this research work. Pressure transient analysis is often more significant than the steady state analysis that engineers usually use in pipeline design. Pressure transient analysis helps to understand the additional pressures the pipeline can be subjected to as a result of instantaneous rapid valve closures or pump failure. The fluid pressure and flow rate in the pipeline system may change significantly at some intervals of time due to the valve closure and such types of unsteady situations are encountered more often in pipelines where the valves are suddenly closed. In this paper, pressure surge due to instantaneous valve closure in a petroleum pipeline conveying AGO was studied in a virtual environment. WANDA Transient 4.5.1210 commercial software was used for the analysis of the pressure surge in the pipeline due to instantaneous valve closure time of 4.75s. It was observed in the study that pressure at some nodes rise significantly up to about 1400 kPa against the initial inlet pressure of 120 kPa due to the instantaneous valve closure and it drastically drops at some nodes to negative pressure of about -100 kPa and hence the formation of cavitations. The analysis showed that the magnitude of the pressure surge decreases as the valve closure is increased.
  • Item
    Numerical Investigation of Thermomechanical Fatigue Behavior in Aeroderivative Gas Turbine Blades
    (NIPES Journal of Science and Technology Research, 2021-08-31) Orah, .A. M.; Nasir, .A.; Hassan, .A. B.; Bori Ige
    The hot gas component of the gas turbine engine comprises the burner, the turbine stages, and the exhaust nozzles/ducts. However, the turbine blades experience high thermal and mechanical loading. As a result, they suffer thermo-mechanical fatigue (TMF). The design process usually involves the appropriate selection of the turbine blade materials. Therefore, the need to carry out thermo-mechanical fatigue studies on gas turbine blades to predict blade life. During TMF loading, fatigue, oxidation, and creep damages are induced, and the relative contributions of these damages vary with the different materials and loading conditions. The study employed the finite element method to examine the high temperature and stress effects on the blades during TMF. The blade material considered in this study is a nickel-based super-alloy, Inconel 738 Low Carbon (IN738LC). The finite element method predicted the temperature and stress distributions in the blade, illustrating the blade sections prone to damage during thermomechanical fatigue. The equations from the law of heat conduction of Fourier and the cooling law of Newton predicted the heat transfer process of the interaction between the blade, hot gases, and cooling air. Therefore, the finite element method is suitable for studying the thermomechanical fatigue behavior of turbine blade metals, which is a precursor to blade life predictions.
  • Item
    EVALUATION OF RICE HUSK-GROUNDNUT SHELL BIOBRIQUETTE AS AN ALTERNATIVE FUEL FOR DOMESTIC COOKING IN NIGERIA
    (Journal of Inventive Engineering and Technology (JIET), 2022-02-26) Bori Ige; Muhammad, .A. B.; Maina, .M. B.; Iyodo, .H. M.
    This research work involves the evaluation of biomass briquettes produced from the blends of rice husk and groundnut shell as feed stocks and gum Arabic as a binder. Five briquettes of different compositions of groundnut shell/rice husk where produced and evaluated in this research. The moisture content, ash content, volatile matter, fixed carbon, compressive strength, afterglow time, flame propagation time, heating value and water boiling test were investigated to determine the physic-thermal properties of the briquettes produced. The results of the investigation showed that moisture content of the briquettes ranged from 3.96 – 5.63%, the heating value ranges from 130, 62.2 – 141, 62.56 kJ/kg, the compressive strength also ranges from 5.63-10.2 kN/m2, the range of ash content is 6.10 - 9.32 %, for fixed carbon is 7.67 - 20.2 %, the after afterglow time ranges from 238-271 sec and the range for water boiling test time is 10m, 34s – 13m, .22s. These values satisfactorily compares well with values obtained by other researchers in the literature. Therefore, the groundnut shell-rice husk briquettes are good alternative source of thermal energy for cooking. It is an economical and also an environmental friendly source of energy and waste disposal.
  • Item
    Techno-Economic Analysis of Combined Cycle Power Plants for Electricity Generation in Nigeria
    (Nigerian Journal of Technology (NIJOTECH), University of Nigeria, Nnsuka, 2022-09-10) Bori Ige; Orah, .A. M.; Ayo, .S. A.
    This paper presents a techno-economic approach to readily assess the profitability or otherwise of combined cycle power plants (CCPPs) for increased electricity production in Nigeria. As a case study for this analysis, a combined cycle gas turbine plant with 650MW installed capacity at Afam VI power station is used to evaluate the installation of a 1000MW and 1500MW CCPP economically. The results and analysis determined a Levelized cost of electricity of N41.57k/KWh and N34.09k/KWh for the 1500MW and 1000MW CCPP, respectively. It signifies an increase of 33.33% and 66.67% in the cost of electricity per kWh between the 1000MW and 1500MW plant capacities respectively, relative to the 650MW CCPP. Therefore, the low LCOE makes it economically viable to install the 1000MW CCPP for electricity production in the country. The paper also proposes upgrading existing gas-fired power plants in the country into combined cycle power plants for improved electricity supply.
  • Item
    Development and Testing of a Heat Dissipation System Using Fins for a Motorcycle Exhaust Pipe
    (Nigerian Journal of Engineering Science Research (NIJESR), 2022-12-30) Okegbile, .O. J.; Oboakporhorho, .J. J.; Bori Ige; Babawuya, .A.; Bako, .S.; Musa, .N. A.
    The paper developed and investigate the use of fins as heat exchanger in dissipation of heat that arise from motorcycle exhaust pipe which can result in variety of degree of burns, affecting both users and passengers when in accidental contact with it. In this research work, copper pipe and aluminum fins were used because the heat transfer rate needs to be improved. The fabrication of the fins array was carried out with the use of 1mm aluminum material and 4mm copper pipe the base plate, the fins array are very potable and may be unfastened used on other exhaust pipes, since the fins are assembled with bolts and nuts. The analysis shows that the rate of heat transfer from the exhaust pipe (without fins) is1078W, while the heat transfer from the fins array was 2692.3W; which shows an increase in exhaust pipe heat transfer by factor of 2.5. Therefore, the risk of contacting serious burn when in accidental contact with the exhaust pipe has been reduced. It is hereby recommended that, the Semi rectangular fins profile can also be used for further research work because they are also effective, and the Copper fin may be considered for further work due to excellent thermal conductivity of the material.
  • Item
    Investigation of the Temperature Variations in Aeroderivative Gas Turbine Blade Cooling
    (Journal of Materials Engineering, Structures and Computation, 2023-11-22) Orah, A. .M.; Nasir, .A.; Hassan, .A.B.; Bori Ige; Ayo, .S. A.
    In order to improve performance and efficiency, modern-day gas turbines operate at high temperatures. It is essential to use suitable cooling techniques on the blade and other hot areas since the elevated temperatures might exceed the metal melting temperature of the turbine blades. This paper presents the numerical modelling of heat exchange in a cooled aerodrivative gas turbine blade depending on the Newton’s law of cooling equation as governing equation, then integrating the heat transfer coefficient by convection into the alternating direction implicit (ADI) approach of computational fluid dynamics (CFD). Based on the chosen boundary conditions and the gas turbine's intended cooling characteristics, a model for the heat transfer problem was created. A MATLAB code was developed to ascertain the temperature variations inside a cooling blade for a half-hour in-service operation. This study found a temperature difference between the transient and final temperature values of roughly 25 to 300oC, demonstrating the heat transfer process between the hot gases and the coolant air. It inferred effective heat transmission from the blades to the cooling air because the temperature differential within the blades did not rise over the melting point of the blade material and it yielded an average blade temperature of 400°C. Thus, the ADI technique is appropriate for heat transfer design calculations for intricate devices such as the gas turbine engine.
  • Item
    Cavitational Deterioration of Diesel Power Plant Cylinder Liner
    (Journal of Mechanical and Energy Engineering, 2020-12-10) Bako, .S.; Nasir, .A.; Bori Ige; Musa, .N.
    The generating station in which diesel engine is used as a prime mover for generating electrical energy is known as diesel power plant. The cylinders liner are cylindrical component that are fixed inside the engine block. The function of the cylinder liners is to retain the working fluid and to guide the piston. Most diesel power plant uses wet-cylinder liners that are exposed to intensive cavitation. The paper aimed at studying the behavior of the cylinder liners that can lead to cavitation. The analysis involves, modeling and simulation in using Solidworks Software. The analysis shows that the cylinders are subjected to harmonic vibration resulting to momentary separation of the coolant from the cylinder wall, creating a pressure difference around the coolant surface which forms air bubbles. These bubbles explode at an extreme velocity. The explosion of these bubbles release surface energy known as cavitation. The energy hammers the cylinder liner surface thereby removing minute particles of metal from the surface of the vibrating cylinder leading to cavitational deterioration. The paper hereby calls on automotive designers to take critical measures in designing of; cylinder liner, water jacket and the entire cooling system, in order to control this phenomenon.
  • Item
    Stability Analysis of a Semi-Trailer Articulated Vehicle: A Review
    (International Journal of Automotive Science and Technology (Turkey), 2021-06-30) Bako, .S.; Bori Ige; Nasir, .A.; Musa, .N. A.
    Semi-trailer articulated vehicles are mainly used for transportation of goods and industrial products. The vehicles are made of two or more vehicular units that are coupled by a me-chanical device called, hitch point. The static and dynamic behavior of these vehicles differs from those of other vehicles, while accidents on these vehicles are fatal and disastrous. Therefore, there is need to know more about the static and dynamic characteristic of these vehicle, in order to ensure safety of lives and properties. This paper provides literature review on the aforementioned vehicle in order to have more insight on how to improve its stability. It was observed from the literatures review that, the higher the weight on this vehicle, the farther the distance of centre of gravity (CG) from the hitch point. This affects the safety margin against rollover stability of these vehicles. The fifth wheel lead, and the distance between the tractor, and the trailer CG were also found to play a vital role in influencing the stability of these vehicles. However, it was observed that, it would of great important for a tractor unit with one rear axle, to have the fifth wheel lead, to be as large as possible in order to control the vehicle instability. Therefore, due to the unusual behavior of these vehicles, more research works are needed in order to have more insight on the static and dynamic characteristic of these vehicles as to improve the safety of lives and properties.