Journal Articles
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/1
Journal Articles
Browse
2 results
Search Results
Item Numerical Investigation of Thermomechanical Fatigue Behavior in Aeroderivative Gas Turbine Blades(NIPES Journal of Science and Technology Research, 2021-08-31) Orah, .A. M.; Nasir, .A.; Hassan, .A. B.; Bori IgeThe hot gas component of the gas turbine engine comprises the burner, the turbine stages, and the exhaust nozzles/ducts. However, the turbine blades experience high thermal and mechanical loading. As a result, they suffer thermo-mechanical fatigue (TMF). The design process usually involves the appropriate selection of the turbine blade materials. Therefore, the need to carry out thermo-mechanical fatigue studies on gas turbine blades to predict blade life. During TMF loading, fatigue, oxidation, and creep damages are induced, and the relative contributions of these damages vary with the different materials and loading conditions. The study employed the finite element method to examine the high temperature and stress effects on the blades during TMF. The blade material considered in this study is a nickel-based super-alloy, Inconel 738 Low Carbon (IN738LC). The finite element method predicted the temperature and stress distributions in the blade, illustrating the blade sections prone to damage during thermomechanical fatigue. The equations from the law of heat conduction of Fourier and the cooling law of Newton predicted the heat transfer process of the interaction between the blade, hot gases, and cooling air. Therefore, the finite element method is suitable for studying the thermomechanical fatigue behavior of turbine blade metals, which is a precursor to blade life predictions.Item Investigation of the Temperature Variations in Aeroderivative Gas Turbine Blade Cooling(Journal of Materials Engineering, Structures and Computation, 2023-11-22) Orah, A. .M.; Nasir, .A.; Hassan, .A.B.; Bori Ige; Ayo, .S. A.In order to improve performance and efficiency, modern-day gas turbines operate at high temperatures. It is essential to use suitable cooling techniques on the blade and other hot areas since the elevated temperatures might exceed the metal melting temperature of the turbine blades. This paper presents the numerical modelling of heat exchange in a cooled aerodrivative gas turbine blade depending on the Newton’s law of cooling equation as governing equation, then integrating the heat transfer coefficient by convection into the alternating direction implicit (ADI) approach of computational fluid dynamics (CFD). Based on the chosen boundary conditions and the gas turbine's intended cooling characteristics, a model for the heat transfer problem was created. A MATLAB code was developed to ascertain the temperature variations inside a cooling blade for a half-hour in-service operation. This study found a temperature difference between the transient and final temperature values of roughly 25 to 300oC, demonstrating the heat transfer process between the hot gases and the coolant air. It inferred effective heat transmission from the blades to the cooling air because the temperature differential within the blades did not rise over the melting point of the blade material and it yielded an average blade temperature of 400°C. Thus, the ADI technique is appropriate for heat transfer design calculations for intricate devices such as the gas turbine engine.