Journal Articles
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/1
Journal Articles
Browse
17 results
Search Results
Item Stability and Bifurcation Analysis of a Mathematical Modeling of Measles Incorporating Vitamin a Supplement(Sule Lamido University Journal of Science and Technology (SLUJST), 2021-01-20) Somma, Samuel Abu; Akinwande, N. I.; Gana, P.; Ogwumu, O. D.; Ashezua, T. T.; Eguda, F. YMeasles is transmissible disease that is common among children. The death caused by measles among children of five years and below is alarming in spite of the safe and effective vaccine. It has been discovered that Vitamin A Deficiency (VAD) in children increases their chances of measles infection. In this paper, the mathematical model of measles incorporating Vitamin A supplement as treatment was formulated and analyzed. The equilibrium points are obtained and analyzed for stability. Bifurcation and sensitivity analyses were carried out to gain further insight into the spread and control of measles. The stability analysis revealed that Disease Free Equilibrium (DFE) is stable if R0 1. The bifurcation analysis revealed forward bifurcation while the sensitivity analysis shows the most sensitive parameters of the model that are responsible for the spread and control of the diseases. The effect of sensitive parameters on Basic Reproduction Number, 0 R were presented graphically. Vaccination, recovery and Vitamin A supplement rates have been shown from the graphical presentation as the important parameter that will eradicate the measles from the population while contact and loss of immunity rates have shown that measles will persist in the population. People should be sensitized on the danger of living with infected persons. Government should do more in routine immunization and administration of Vitamin A Supplement.Item Approximate Solution of SIR Infectious Disease Model Using Homotopy Pertubation Method (HPM)(Pacific Journal of Science and Technology (PJST), 2013-12-25) Abubakar, Samuel; Akinwande, N. I.; Jimoh, O. R.; Oguntolu, F. A.; Ogwumu, O. D.In this paper we proposed a SIR model for general infectious disease dynamics. The analytical solution is obtained using the Homotopy Perturbation Method (HPM). We used the MATLAB computer software package to obtain the graphical profiles of the three compartments while varying some salient parameters. The analysis revealed that the efforts at eradication or reduction of disease prevalence must always match or even supersede the infection rate.Item Stability Analysis of Disease Free Equilibrium (DFE) State of a Mathematical Model of Yellow Fever Incorporating Secondary Host(Pacific Journal of Science and Technology, 2017-12-28) Somma, Samuel Abu; Akinwande, N. I.; Jiya, M.; Abdulrahaman, S.In this paper we formulate a mathematical model of yellow fever incorporating secondary host. We obtained the Disease Free Equilibrium (DFE) Points and compute the basic reproduction number. The local and global stability of the DFE was analyzed using Jacobian Matrix stability techniques and Lyapunov function respectively. The local and global stability was asymptotically stable if 1 0 R and 1 0 R , respectively. The basic reproduction number and control parameters of the model were presented graphically.Item Modelling the Impacts of Media Campaign and Double Dose Vaccination in Controlling COVID-19 in Nigeria(Alexandria Engineering Journal, 2023-01-15) Akinwande, N. I.; Somma, Samuel Abu; Olayiwola, R. O.; Ashezua, T. T.; Gweryina, R. I.; Oguntolu, F. A.Corona virus disease (COVID-19) is a lethal disease that poses public health challenge in both developed and developing countries of the world. Owing to the recent ongoing clinical use of COVID-19 vaccines and noncompliance to COVID-19 health protocols, this study presents a deterministic model with an optimal control problem for assessing the community-level impact of media campaign and double-dose vaccination on the transmission and control of COVID-19. Detailed analysis of the model shows that, using the Lyapunov function theory and the theory of centre manifold, the dynamics of the model is determined essentially by the control reproduction number (𝑅𝑚𝑣). Consequently, the model undergoes the phenomenon of forward bifurcation in the absence of the double dose vaccination effects, where the global disease-free equilibrium is obtained whenever 𝑅𝑚𝑣 ≤ 1. Numerical simulations of the model using data relevant to the transmission dynamics of the disease in Nigeria, show that, certain values of the basic reproduction number ((𝑅0 ≥ 7)) may not prevent the spread of the pandemic even if 100% media compliance is achieved. Nevertheless, with assumed 75% (at 𝑅0 = 4)) media efficacy of double dose vaccination, the community herd immunity to the disease can be attained. Furthermore, Pontryagin’s maximum principle was used for the analysis of the optimized model by which necessary conditions for optimal controls were obtained. In addition, the optimal simulation results reveal that, for situations where the cost of implementing the controls (media campaign and double dose vaccination) considered in this study is low, allocating resources to media campaign-only strategy is more effective than allocating them to a firstdose vaccination strategy. More so, as expected, the combined media campaign-double dose vaccination strategy yields a higher population-level impact than the media campaign-only strategy, double-dose vaccination strategy or media campaign-first dose vaccination strategy.Item A Global Asymptotic Stability of COVID-19 Diabetes Complication Free Equilibrium(Journal of Science, Technology, Mathematics and Education (JOSTMED), 2024-03-25) Yusuf, A,; Akinwande, N. I.; Olayiwola, R. O.; Kuta, F. A.; Somma, Samuel AbuIn this paper, a Mathematical modelling of COVID-19 incorporating the comorbidity of Diabetes was established base on the accompanying assumptions, a global asymptotic of the same model was developed by applying the theorem of Castillo-Chavez by fixing a point to be globally asymptotic stable equilibrium of the system, provided that and the two set conditions are satisfied. It is very clear that so the conditions are not met. Hence, may not be globally asymptotically stable when .Item Local Stability Analysis of a Tuberculosis Model incorporating Extensive Drug Resistant Subgroup(Pacific Journal of Science and Technology (PJST), 2017-05-20) Eguda, F. Y.; Akinwande, N. I.; Abdulrahman, S.; Kuta, F. A.; Somma, Samuel AbuThis paper proposes a mathematical model for the transmission dynamics of Tuberculosis incorporating extensive drug resistant subgroup. The effective reproduction number was obtained and conditions for local stability of the disease R c free equilibrium and endemic equilibrium states were established. Numerical simulations confirmed the stability analysis and further revealed that unless proper measures are taken against typical TB, progression to XDR-TB, mortality and morbidity of infected individuals shall continue to rise.Item Mathematical Modeling of Algae Population Dynamics on the Surface of Water(The Pacific Journal of Science and Technology, 2019-11-22) Abdurrahman, Nurat Olamide; Somma, S. A.; Akinwande, N. I.The paper presented an analytical solution of the exponential growth model of algae population dynamics on the water surface. The Computer Symbolic Algebraic Package, MAPLE, is used to simulate the graphical profiles of the population with time while varying the parameters, such as diffusion and rate of change of algae density, governing the subsistence or extinction of the water organisms.Item A MATHEMATICAL MODEL OF MEASLES DISEASE DYNAMICS(Journal of Science, Technology, Mathematics and Education (JOSTMED), 2012-08-25) Abubakar, Samuel; Akinwande, N. I.; Abdulrahman, S.In this paper a Mathematical model was proposed for measles disease dynamics. The model is a system of first order ordinary differential equations with three compartments: Susceptible S(t); Infected I(t) and Recovered R(t). The equilibrium state for both Disease Free and Endemic equilibrium are obtained. Conditions for stability of the Disease Free and Endemic equilibrium are obtained from characteristics equation and Bellman and Cooke theorem respectively. The hypothetical values were used to analyze the Endemic Equilibrium and the result was presented in tabular form. The results from the Disease Free and Endemic Equilibrium state showed that once the epidemic breaks out, the population cannot sustain it.Item A Mathematical Model of a Yellow Fever Dynamics with Vaccination(Journal of the Nigerian Association of Mathematical Physics, 2015-11) Oguntolu, F. A.; Akinwande, N. I.; Somma, Samuel Abu; Eguda, F. Y.; Ashezua. T. T.In this paper, a mathematical model describing the dynamics of yellow fever epidemics, which involves the interactions of two principal communities of Hosts (Humans) and vectors (mosquitoes) is considered .The existence and uniqueness of solutions of the model were examined by actual solution. We conduct local stability analysis for the model. The results show that it is stable under certain conditions. The system of equations describing the phenomenon was solved analytically using parameter-expanding method coupled with direct integration. The results are presented graphically and discussed. It is discovered that improvement in Vaccination strategies will eradicate the epidemics.Item Existence of Equilibrium points for the Mathematical Modeling of Yellow Fever Transmission Incorporating Secondary Host(Journal of the Nigerian Association of Mathematical Physics, 2017-07-15) Somma, Samuel Abu; Akinwande, N. I.; Jiya, M.; Abdulrahman, S.In this paper we, formulated a mathematical model of yellow fever transmission incorporating secondary host using first order ordinary differential equation. We verified the feasible region and the positivity of solution of the model. There exist two equilibria; disease free equilibrium (DFE) and endemic Equilibrium (EE). The disease free equilibrium (DFE) points were obtained.