Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/100
Mathematics
Browse
12 results
Search Results
Item Stability Analysis for Mathematical Modeling of Dengue Fever Transmission and Control(Proceedings of International Conference on Contemporary Developments in Mathematical Sciences (ICCDMS), 2021-04-13) Aliyu, A. H.; Akinwande, N. I.; Somma, Samuel AbuDengue fever is one of the greatest health challenges in the present world. In this work, mathematical modeling of dengue fever transmission and control was formulated. The model considered the human population h N and the vector population m N which are further subdivided into six classes, susceptible human 𝑆, infected human 𝐼, temporary recovered human class 1 R , permanently recovered human class 2 R , susceptible mosquito 1 M , and infected mosquito class 2 M . The Disease Free Equilibrium (DFE) point was obtained and the basic Reproduction number 0 R was computed. The Disease Free Equilibrium (DFE) is locally and globally asymptotically stable when R0 1.Item Stability Analysis of the Disease-Free Equilibrium State of a Mathematical Model of Measles Transmission Dynamics(Proceedings of 2nd International Conference on Mathematical Modelling, Optimization and Analysis of Disease Dynamics (ICMMOADD) 2025. Federal University of Technology, Minna, Nigeria, 2025-02-20) Adama, P. W.; Somma, Samuel AbuMeasles is an acute viral infectious disease caused by the Measles morbillivirus, a member of the paramyxovirus family. The virus is primarily transmitted through direct contact and airborne droplets. In this study, a mathematical model was developed to examine the transmission dynamics of measles and explore effective control measures. The stability of measles-free equilibrium was analyzed, and the results indicate that the equilibrium is locally asymptotically stable when the basic reproduction number R0 is less than or equal to unity. Numerical simulations were conducted to validate the analytical findings, demonstrating that measles can be eradicated if a sufficiently high level of treatment is applied to the infected population.Item Mathematical analysis of a Chlamydia trachomatis with nonlinear incidence and recovery rates(Proceedings of 2nd International Conference on Mathematical Modelling, Optimization and Analysis of Disease Dynamics (ICMMOADD) 2025. Federal University of Technology, Minna, Nigeria, 2025-02-20) Ashezua, T. T.; Abu, E. A.; Somma, Samuel AbuChlamydia, one of the commonest sexually transmitted infections (STIs), remain a public health concern in both underdeveloped and developed countries of the world. Chlamydia has caused worrying public health consequences hence much research work is needed to check the spread of the disease in the population. In this paper, a mathematical model for Chlamydia is developed and analyzed with nonlinear incidence and recovery rates. Qualitative analysis of the model shows that the disease-free equilibrium is locally asymptotically stable using the method of linearization. Further, using the comparison theorem method, the disease-free equilibrium is found to be globally asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, mathematical analysis of the reproduction number shows that the intervention levels and the maximum per capita recovery rate due to effective treatment has a significant impact in reducing the burden of Chlamydia in the population. Numerical results show a relationship between the transmission rate, intervention levels, maximum per capita recovery rate and the reproduction number. Sensitivity analysis was conducted on the parameters connected to the reproduction number, Rc and results reveal that the top parameters that significantly drive the dynamics of Chlamydia in the population are the transmission rate, intervention levels and the maximum per capita recovery rate. These parameters need to be checked by healthcare policy makers if the disease must be controlled in the population.Item SENSITIVITY ANALYSIS FOR THE MATHEMATICAL MODELING OF MEASLES DISEASE INCORPORATING TEMPORARY PASSIVE IMMUNITY(1st SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2017-05-05) Somma, Samuel Abu; Akinwande, N. I.Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. Measles antibodies are transferred from mothers who have been vaccinated against measles or have been previously infected with measles to their newborn children. These antibodies are transferred in low amounts and usually last six months or less. In this paper a mathematical model of measles disease was formulated incorporating temporary passive immunity. There exist two equilibria in the model; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE). The Disease Free Equilibrium (DFE) state was analyzed for local and global stability. The Basic Reproduction Number 0 R was computed and used to carried out the sensitivity analysis with some parameters of the mode. The analysis shows that as contact rate increases the 0 as the vaccination rate v increases the 0 R decreases. Sensitive parameters with the R R 0 increases and were presented graphically. The disease will die out of the population if the attention is given to high level immunization.Item Mathematical Modelling for the Effect of Malaria on the Heterozygous and Homozygous Genes(6th International Conference on Mathematical Analysis and Optimization: Theory and Applications (ICAPTA 2019), 2019-03-29) Abdurrahman, N. O.; Akinwande, N. I.; Somma, Samuel AbuThis paper models the effect of malaria on the homozygous for the normal gene (AA), heterozygous for sickle cell gene (AS) and homozygous for sickle cell gene (SS) using the first order ordinary differential equation. The Diseases Free Equilibrium (DFE) was obtained and used to compute the basic reproduction Number Ro. The local stability of the (DFE) was analyzed.Item Differential Transformation Method (DTM) for Solving Mathematical Modelling of Monkey Pox Virus Incorporating Quarantine(Proceedings of 2nd SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2019-06-26) Somma, Samuel Abu; Akinwande, N. I.; Abdurrahman, N. O.; Zhiri, A. B.In this paper the Mathematical Modelling of Monkey Pox Virus Incorporating Quarantine was solved semi-analytically using Differential Transformation Method (DTM). The solutions of difference cases were presented graphically. The graphical solutions gave better understanding of the dynamics of Monkey pox virus, it was shown that effective Public Enlightenment Campaign and Progression Rate of Quarantine are important parameters that will prevent and control the spread of Monkey Pox in the population.Item Local and Global Stability Analysis of a Mathematical Model of Measles Incorporating Maternally-Derived-Immunity(Proceedings of International Conference on Applied Mathematics & Computational Sciences (ICAMCS),, 2019-10-19) Somma, Samuel Abu; Akinwande, N. I.; Gana, P.In this paper, the local stabilities of both the Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) were analyzed using the Jacobian matrix stability technique. The global stabilities were analyzed using Lyapunov function. The analysis shows that the DFE is locally and globally stable if the basic reproduction number R 0 1 R 0 1 and R 0 1 respectively. The EE is also locally and globally stable if . Vaccination and recovery rates have been shown from the graphical presentation as the important parameter that will eradicate measles from the population.Item Population dynamics of a mathematical model for Campylobacteriosis(Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Ashezua, T. T.; Salemkaan, M. T.; Somma, Samuel AbuThe bacterium campylobacter is the cause of campylobacteriosis, a major cause of foodborne illness that goes by the most common name for diarrheal illnesses. This paper develops and analyzes a new mathematical model for campylobacteriosis. It is demonstrated that in cases where the corresponding reproduction number is smaller than unity, the model's disease-free equilibrium is both locally and globally stable. The numerical simulation results indicate that increasing the treatment rate for both symptomatic and asymptomatic disease-infected individuals resulted in a decrease in the number of asymptomatic and symptomatic individuals, respectively, and a rise in the population's number of recovered individuals.Item Homotopy Perturbation Analysis of the Spread and Control of Lassa Fever(Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Tsado, D.; Oguntolu, F. A.; Somma, Samuel AbuLassa fever, a viral infection transmitted by rodents, has emerged as a significant global health concern in recent times. It continues to garner significant attention daily basis owing to its rapid transmission and deadly nature. In this study, the Homotopy Perturbation Analysis was conducted to examine the spread and control of Lassa fever. The human population was categorized into susceptible, exposed, infected, and recovered compartments, while the rodent population was divided into susceptible and infected recovered compartments. By applying the Homotopy Perturbation Analysis to the nonlinear differential equations associated with these compartments, we were able to obtain the analytical solution for the spread and control of Lassa fever. The nonlinear differential equations were integrated into the Homotopy Perturbation framework and solved to form a power series solution. Finally, the final approximate solutions were obtained and simulation results were generated from the general solution graphically.Item Local Stability Analysis of a Tuberculosis Model incorporating Extensive Drug Resistant Subgroup(Pacific Journal of Science and Technology, 2017-05-25) Eguda, F. Y.; Akinwande, N. I.; Abdulrahman, S.; Kuta, F. A.; Somma, Samuel AbuThis paper proposes a mathematical model for the transmission dynamics of Tuberculosis incorporating extensive drug resistant subgroup. The effective reproduction number c R was obtained and conditions for local stability of the disease free equilibrium and endemic equilibrium states were established. Numerical simulations confirmed the stability analysis and further revealed that unless proper measures are taken against typical TB, progression to XDR-TB, mortality and morbidity of infected individuals shall continue to rise.