Civil Engineering

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/148

Civil Engineering

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Statistical Model for Predicting Slump and Strength of Concrete Containing Date Seeds
    (Covenant Journal of Engineering Technology (CJET), 2021) Yusuf, A; Jamal, J. O.; Abubakar, Mahmud; Aminulai, H. O.
    Incorporating agro-based waste in concrete can reduce environmental pollution and lead to preserving the ecosystem. In order to reduce trial and error in achieving desired slump and compressive strength of concrete containing Date Seed (DS), this paper examines the slump and compressive strength of concrete using date seeds as a partial replacement for crushed granite. Preliminary tests were conducted on the aggregates to ascertain their suitability for concrete production. Concrete with DS-crushed granite ratios of 0:100, 5:95, 10:90, 15:85, and 20:80 were prepared using a mix ratio of 1:2:4 and a water-cement ratio of 0.5. Slump loss was used to estimate the workability of the fresh concrete. The freshly prepared concrete was cast in 150 x 150 x 150 mm and the compressive strength was determined after curing by full immersion in water for 7, 14, 21 and 28 days. Results showed that the slump of concrete increased with an increase in the content of date seed. The compressive strength was inversely proportional to the date seed content with a DS crushed granite ratio of 20:80 recording the lowest compressive strength (20N/mm2). Linear regression models for slump and compressive strength were developed and found to be sufficient in explaining the experimental data based on a Mean Square Error (MSE) of 0.37 and 0.029 and R2 of 88% and 99% obtained for slump and compressive strength respectively. The study has concluded that DS can be used as a partial replacement for crushed granite in concrete and a linear model is sufficient in predicting the slump and strength of concrete containing date seeds.
  • Item
    Development of an Android Based Mobile Application for Design and Detailing of Pad Foundations to BS8110
    (Epistemics in Science, Engineering and Technology, 2017) Yusuf, A.; Aminulai, H. O.; Abdullahi, A.; Abubakar, Mahmud; Alhaji, B.
    Many innovative computer software have been developed to perform the task of designing and detailing structural elements such as beams, columns, slabs and foundations. This design and detailing can be done using mobile devices but software developed to operate on such devices have not been fully developed. However, this research is aimed at developing an android based mobile application for the design of pad foundations to Bs8110. The mobile application developed designs isolated axially loaded-only; axially loaded with moment pad footings as well as combined pad footings. The mobile application developed was tested using three typical test parameters and results compared to the manual computations. There was no significant variation in the steel sections required and provided for the manual design and that generated by the mobile application. The steel required by manual design for the axially loaded pad footing was 835mm2/m and that generated by the application was 837.2mm2/m. That of the axially loaded with moment gave required steel section as 1019mm2/m using manual design. This android based mobile application would thus give the structural engineer the leverage to design pad footings anywhere and anytime.
  • Item
    DEVELOPMENT OF AN ANDROID BASED MOBILE APPLICATION FOR THE DESIGN AND DETAILING OF ISOLATED PAD FOUNDATIONS ACCORDING TO EUROCODE 2
    (i-manager’s Journal on Mobile Applications & Technologies, 2019) Yusuf, Abdulazeez; Isiaka, I.; Abubakar, Mahmud; Aminulai, H. O.; Abdullahi, Aliyu; Alayande, T. A.
    In a building construction project, it is the responsibility of the structural engineer to come up with a complete design of all structural elements. When this is done manually it is tasking, time consuming, and produces errors with inconsistent results. However, the design can be done using computer software, but this also comes with some downside; it is expensive and complex to use. Thus, this research developed an android based mobile application for the design of pad foundations to Eurocode 2 to put these challenges in check when designing pad footings. The mobile application designs isolated Axially loaded-only and Axially loaded with bending pad footing to Eurocode 2 accurately, with consistent results and in a timely manner. The application was tested using typical test parameters and results are compared to the manual computations. There was no significant difference in the steel sections provided for both methods. All checks that must be satisfactory in design were all checked and found to be satisfactory.