Industrial Mathematics

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/189

Industrial Mathematics

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Mathematical model and analysis of the soil-transmitted helminth infections with optimal control
    (Springer Science and Business Media LLC, 2024-02) Festus Abiodun Oguntolu; Olumuyiwa James Peter; Abubakar Yusuf; B. I. Omede; G. Bolarin; T. A. Ayoola
    Soil-transmitted helminth diseases are highly prevalent in impoverished regions and pose a significant health burden on the global population. These diseases are primarily transmitted through the contamination of soil with human faces containing parasite eggs. This study presents a novel deterministic mathematical model to comprehensively investigate the dynamics of helminth infection transmission through the soil. The mathematical model exhibits two equilibrium points: the diseases-free equilibrium point (DFE) and the endemic equilibrium point (EEP). The DFE is proven to be locally and globally asymptotically stable when the basic reproduction number is less than one, indicating the potential for disease eradication. Conversely, the EEP is locally asymptotically stable when the basic reproduction number exceeds unity, representing a persistent endemic state. To explore effective intervention strategies for controlling the spread of these infections, optimal control theory is applied. The study incorporates two time-varying control variables derived from sensitivity analysis: the rate of hygiene consciousness in the susceptible class and the rate of hygiene consciousness in the infectious class. Numerical simulations demonstrate that implementing optimal control strategies can successfully curb and mitigate soil-transmitted helminth infections. Overall, this research highlights the importance of proactive and targeted interventions, emphasizing the significance of hygiene education and awareness campaigns. By implementing optimal control measures based on the proposed strategies, the burden of soil-transmitted helminth diseases can be significantly reduced, improving public health in affected regions.
  • Item
    Mathematical Modeling of Polio Virus Infection Incorporating Immigration and Vaccination
    (Faculty of Physical Sciences, University of Ilorin, 2019-12-01) G. Bolarin; I. U. Omatola; A. Yusuf; C. E. Odo; F. A. Oguntolu; M. A. Philip
    A deterministic mathematical model for polio infection dynamics with emphasis on immigration and vaccination was formulated and analyzed. We derived the basic reproduction number, of the model formulated. The effective reproduction number was computed using the next generation matrix to enable a qualitative analysis to be carried out on the model. Also, the disease-free equilibrium and endemic equilibrium points were computed. On analyzing the equilibrium points, we found that the disease-free equilibrium point is locally asymptotically stable if and the condition for existence on an Endemic Equilibrium point was also established. More so, numerical simulations showed that vaccination coverage of about 75% would be enough to eradicate polio from the population.