Agric & Bioresources Engineering

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/144

Agric & Bioresources Engineering

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Determination of the Suitability of Urine as Substrate in a Power Generating Soil Microbial Fuel Cell
    (2016-08-18) Simeon, Meshack Imologie; Raji O. A.; Musa J. J.; Kuti I.
    Urine has been identified as a suitable substrate in Microbial Fuel Cells (MFCs). However, its possible utilization in a soil-based Membrane-less Single Chamber Microbial Fuel Cell (MSCMFC) has, hitherto, not been reported. This study used the mud-watt MFC vessel inoculated with mud prepared from topsoil, and was operated across seven external loads for 19 days (456 hours) without adding any substrate to the soil. Urine was fed into the cell in four durations of time, after the MFC output stabilized. For comparison, a fresh setup (control MFC) was made and operated under the same conditions of temperature (27+3°C), but without the addition of urine. The performances of the MFCs were examined over seven external loads of resistance: 4670 , 2190 , 1000 , 470 , 220 , 100 , and 47 . The Urine-treated MFC and the control MFC both produced an initial peak power output of 5.62μW. Both MFCs produced close values of power outputs up to the point of adding urine. At the final stage, the peak power output of the MFC treated with urine was 246.77μW; whereas the corresponding values for the control MFC were 0.007μW. This study showed that fresh (untreated) human urine can be successfully utilized as fuel in a soil-based MFC for the production of electrical energy for varied external loads.
  • Item
    Evaluation of the Electrical Performance of a Soil-Type Microbial Fuel Cell Treated with a Substrate at Different Electrode Spacings
    (Proceedings of ICEESEN2020, 2020-11-21) Simeon, Meshack Imologie; Imoize, Agbotiname L.; Freitag, Ruth
    The effect of electrode spacing on the performance of a microbial fuel cell (MFC) under batch treatment with a substrate was investigated with three single-chamber MFCs built with biologically active soil. The electrodes consisted of a stainless-steel mesh with layers of activated carbon catalyst. The MFCs were fed with artificial urine after reaching a stationary phase. After the initial treatment, the cell with the smallest electrode gap produced the maximum peak power under polarization. At 2 cm, 5 cm and 8 cm electrode spacing, the maximum power was 726.2 µW, 547 µW, and 520.3, respectively; while the average power of the MFCs from the first point of treatment with substrate to the last point was 297 + 259.2, 505.43+ 42.5, and 433.81+ 64, respectively. A significant decrease in internal resistance of the MFCs was observed during batch treatment. The impedance analysis of the MFCs showed that the reduction in internal resistance was largely due to a significant decrease in ohmic resistance compared to the charge transfer resistance.