Industrial Mathematics

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/188

Industrial Mathematics

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Modeling the impact of control strategies on malaria and COVID-19 coinfection: insights and implications for integrated public health interventions
    (Springer Science and Business Media LLC, 2023-12-27) Adesoye Idowu Abioye; Olumuyiwa James Peter; Emmanuel Addai; Festus Abiodun Oguntolu; Tawakalt Abosede Ayoola
    This work discusses the challenge posed by the simultaneous occurrence of malaria and COVID-19 coinfection on global health systems. We propose a novel fractional order mathematical model malaria and COVID-19 coinfection. To assess the impact of control strategies on both diseases, we consider two control strategies which are, personal protection against mosquito bites ($$u_{1}(t)$$) and preventive measures for COVID-19 ($$u_{2}(t)$$). Numerical simulations demonstrate that consistent application of these measures leads to significant reductions in disease transmission. Using insecticide-treated nets and repellents during day and night effectively reduces malaria transmission, while implementing facial masks and hand hygiene controls COVID-19 spread. The most substantial impact is observed when both sets of protection measures are simultaneously adopted, highlighting the importance of integrated strategies. The study provides valuable insights into malaria and COVID-19 coinfection dynamics and emphasizes the impact of the control measures. of individual behavior and consistent adoption of personal protection measures to control both diseases. It underscores the need for integrated public health interventions to combat the dual burden of malaria and COVID-19, contributing to the development of targeted and efficient control measures.
  • Item
    Differential Transform Method for Solving Mathematical Model of SEIR and SEI Spread of Malaria
    (International Journal of Sciences: Basic and Applied Research (IJSBAR), 2018-07-18) A. I. Abioye; M. O. Ibrahim; O. J. Peter; S. Amadiegwu; F. A. Oguntolu
    In this paper, we use Differential Transformation Method (DTM) to solve two dimensional mathematical model of malaria human variable and the other variable for mosquito. Next generation matrix method was used to solve for the basic reproduction number and we use it to test for the stability that whenever the disease-free equilibrium is globally asymptotically stable otherwise unstable. We also compare the DTM solution of the model with Fourth order Runge-Kutta method (R-K 4) which is embedded in maple 18 to see the behaviour of the parameters used in the model. The solutions of the two methods follow the same pattern which was found to be efficient and accurate.