Industrial Mathematics

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/188

Industrial Mathematics

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Modeling the impact of control strategies on malaria and COVID-19 coinfection: insights and implications for integrated public health interventions
    (Springer Science and Business Media LLC, 2023-12-27) Adesoye Idowu Abioye; Olumuyiwa James Peter; Emmanuel Addai; Festus Abiodun Oguntolu; Tawakalt Abosede Ayoola
    This work discusses the challenge posed by the simultaneous occurrence of malaria and COVID-19 coinfection on global health systems. We propose a novel fractional order mathematical model malaria and COVID-19 coinfection. To assess the impact of control strategies on both diseases, we consider two control strategies which are, personal protection against mosquito bites ($$u_{1}(t)$$) and preventive measures for COVID-19 ($$u_{2}(t)$$). Numerical simulations demonstrate that consistent application of these measures leads to significant reductions in disease transmission. Using insecticide-treated nets and repellents during day and night effectively reduces malaria transmission, while implementing facial masks and hand hygiene controls COVID-19 spread. The most substantial impact is observed when both sets of protection measures are simultaneously adopted, highlighting the importance of integrated strategies. The study provides valuable insights into malaria and COVID-19 coinfection dynamics and emphasizes the impact of the control measures. of individual behavior and consistent adoption of personal protection measures to control both diseases. It underscores the need for integrated public health interventions to combat the dual burden of malaria and COVID-19, contributing to the development of targeted and efficient control measures.
  • Item
    Direct and indirect transmission of typhoid fever model with optimal control
    (Elsevier BV, 2021-08) Olumuyiwa James Peter; Mohammed Olanrewaju Ibrahim; Helen Olaronke Edogbanya; Festus Abiodun Oguntolu; Kayode Oshinubi; Abdullahi Adinoyi Ibrahim; Tawakalt Abosede Ayoola; John Oluwasegun Lawal
    In this paper, a model for direct and indirect transmission dynamics of typhoid fever with three control interventions is analyzed. Optimal control strategies are proposed to minimize both the disease burden and the intervention cost. We proved the existence and uniqueness of optimal control paths and obtained these optimal paths analytically using Pontryagin’s Maximum Principle. We analyzed our results numerically to compare various strategies of proposed controls. It is observed that the implementation of the three controls among all strategies is most successful. Thus, we conclude that in order to reduce typhoid fever threat, all the three controls must be taken into consideration concurrently.