Industrial Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/188
Industrial Mathematics
Browse
2 results
Search Results
Item A Mathematical Model Analysis of Meningitis with Treatment and Vaccination in Fractional Derivatives(Springer Science and Business Media LLC, 2022-04-26) Olumuyiwa James Peter; Abdullahi Yusuf; Mayowa M. Ojo; Sumit Kumar; Nitu Kumari; Festus Abiodun OguntoluIn this paper, we develop a new mathematical model based on the Atangana Baleanu Caputo (ABC) derivative to investigate meningitis dynamics. We explain why fractional calculus is useful for modeling real-world problems. The model contains all of the possible interactions that cause disease to spread in the population. We start with classical differential equations and extended them into fractional-order using ABC. Both local and global asymptotic stability conditions for meningitis-free and endemic equilibria are determined. It is shown that the model undergoes backward bifurcation, where the locally stable disease-free equilibrium coexists with an endemic equilibrium. We also find conditions under which the model’s disease-free equilibrium is globally asymptotically stable. The approach of fractional order calculus is quite new for such a biological phenomenon. The effects of vaccination and treatment on transmission dynamics of meningitis are examined. These findings are based on various fractional parameter values and serve as a control parameter for identifying important disease-control techniques. Finally, the acquired results are graphically displayed to support our findings.Item Optimizing tuberculosis control: a comprehensive simulation of integrated interventions using a mathematical model(Mathematical Modelling and Numerical Simulation with Applications, 2024-09-30) Olumuyiwa James Peter; Afeez Abidemi; Fatmawati Fatmawati; Mayowa M. Ojo; Festus Abiodun OguntoluTuberculosis (TB) remains a formidable global health challenge, demanding effective control strategies to alleviate its burden. In this study, we introduce a comprehensive mathematical model to unravel the intricate dynamics of TB transmission and assess the efficacy and cost-effectiveness of diverse intervention strategies. Our model meticulously categorizes the total population into seven distinct compartments, encompassing susceptibility, vaccination, diagnosed infectious, undiagnosed infectious, hospitalized, and recovered individuals. Factors such as susceptible individual recruitment, the impact of vaccination, immunity loss, and the nuanced dynamics of transmission between compartments are considered. Notably, we compute the basic reproduction number, providing a quantitative measure of TB transmission potential. Through this comprehensive model, our study aims to offer valuable insights into optimal control measures for TB prevention and control, contributing to the ongoing global efforts to combat this pressing health challenge.