Agric & Bioresources Engineering

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/72

Agric & Bioresources Engineering

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Electrochemical Characterization of Stainless-Steel Mesh and carbon-felt Electrodes for Enhanced Power Generation in Terrestrial Microbial Fuel Cells.
    (School of Physical Sciences, FUTMINNA, 2024-04-24) Simeon, Meshack Imologie; Alaka, Amarachi C.; Daniela, P.; Olalekan, D. Adeniyi
    Terrestrial Microbial Fuel Cells (MFCs) represent a promising avenue for sustainable energy production, leveraging microbial metabolism to convert organic matter in the soil into electricity. Crucial to MFC performance is selecting electrode materials, which directly interface with electroactive microbes for electron transfer. This study conducts a comparative analysis of surface-modified stainless-steel mesh (SMS) and carbon felt (CF) electrodes in terrestrial MFCs, evaluating their performance metrics and impedance spectroscopy. The SMS electrode, fabricated using the pasting and reinforcement process, demonstrated superior performance with a maximum power of 859 µW compared to the 234 µW power of the commercially available CF electrode. This better performance of the SMS electrode was attributed to its pseudocapacitive behavior, enhancing internal charge storage capacity and overall MFC efficiency. Electrochemical impedance spectroscopy revealed a substantially higher charge transfer resistance (Rct) in the CF electrode, impeding electron transfer processes. Conversely, the SMS electrode exhibited lower Rct and improved diffusion characteristics, facilitating efficient electron transfer and mass transport. Notably, the Rct of the CF electrode was over 40 times higher, while its diffusion coefficient was approximately six times greater compared to the SMS electrode. These findings underscore the significance of tailored electrode materials in optimizing MFC performance and emphasize the utility of impedance spectroscopy in elucidating complex electrochemical processes within MFC systems, thus guiding future advancements in sustainable power production in terrestrial MFCs.
  • Item
    Performance of a Single Chamber Soil Microbial Fuel Cell at Varied External Resistances for Electric Power Generation
    (Journal of Renewable Energy and Environment, 2017-02-14) Simeon, Meshack Imologie; Raji O. A.; Agidi Gbabo; Okoro-Shekwaga
    Soil is beginning to attract research attention as a suitable inoculum for Microbial Fuel Cells (MFCs) designed for remediation and electricity generation, probably due to its high microbial load. However, not much has been done in this aspect beyond laboratory-based experiments. This study was aimed at generating electricity from agricultural soil, utilizing the microorganisms present in the soil, and investigating the performance of the soil MFC across varied external loads. The study used the MudWatt MFC kit inoculated with mud prepared from topsoil collected from a garden. The electrodes, made from carbon felt material with conducting wires made from graphite, were housed in the same chamber and placed 4cm apart. Voltage drops across seven external resistances of 4670, 2190, 1000,n470, 220, 100, and 47 Ω were measured every 24 hours, with a digital multimeter, for 40 days. The maximum open-circuit voltage from this study was 731 mV, whereas the maximum power density was 65.40 m/Wm2 at a current density of 190.1mA/m2. The optimum performance of the MFC was achieved with the 470Ω at an internal resistance of 484.14 Ω. This study revealed that MFCs constructed from agricultural topsoil are capable of producing electrical power continuously, across different external loads, without the addition of any substrate. However, there is a need for further studies to keep the MFC output constant at the maximum achievable power.