Telecommunication Engineering

Permanent URI for this collectionhttp://repository.futminna.edu.ng:4000/handle/123456789/752

Telecommunication Engineering

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    IoT in the Wake of COVID-19: A Survey on Contributions, Challenges and Evolution
    (IEEEE Access, 2020) Musa Ndiaye; Oyewobi S. Stephen; Adnan M. Abu-Mahfouz; Gerhard Hancke; Anish M. Kurien; Karim Djouani
    The novel coronavirus (COVID-19), declared by the World Health Organization (WHO) as a global pandemic, has brought with it changes to the general way of life. Major sectors of the world industry and economy have been affected and the Internet of Things (IoT) management and framework is no exception in this regard. This article provides an up to date survey on how a global pandemic such as COVID-19 has affected the world of IoT technologies. It looks at the contributions that IoT and associated sensor technologies have made towards virus tracing, tracking and spread mitigation. The associated challenges of deployment of sensor hardware in the face of a rapidly spreading pandemic have been looked into as part of this review article. The effects of a global pandemic on the evolution of IoT architectures and management have also been addressed, leading to the likely outcomes on future IoT implementations. In general, this article provides an insight into the advancement of sensor-based E-health towards the management of global pandemics. It also answers the question of how a global virus pandemic has shaped the future of IoT networks.
  • Item
    Visible Light Communications for Internet of Things: Prospects and Approaches, Challenges, Solutions and Future Directions
    (MDPI, 2022-02-05) Oyewobi S. Stephen; Karim Djouani; Anish Matthew Kurien
    Visible light communications (VLC) is an emerging and promising concept that is capable of solving the major challenges of 5G and Internet of Things (IoT) communication systems. Moreover, due to the usage of light-emitting diodes (LEDs) in almost every aspect of our daily life VLC is providing massive connectivity for various types of massive IoT communications ranging from machine-to-machine, vehicle-to-infrastructure, infrastructure-to-vehicle, chip-to-chip as well as device-to-device. In this paper, we undertake a comprehensive review of the prospects of implementing VLC for IoT. Moreover, we investigate existing and proposed approaches implemented in the application of VLC for IoT. Additionally, we look at the challenges faced in applying VLC for IoT and offer solutions where applicable. Then, we identify future research directions in the implementation of VLC for IoT.