Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/200
Mathematics
Browse
Item A Homotopy-Perturbation analysis of the non-linear contaminant transport problem in one dimension with an initial continuous point source.(NIGERIAN JOURNAL OF TECHNOLOGICAL RESEARCH (NJTR), 2013-02-28) Aiyesimi, Y. M.; JIMOH, OMANANYI RAZAQIn this research work, a Homotopy-perturbation analysis of a non –linear contaminant flow equation with an initial continuous point source is provided. The equation is characterized by advection, diffusion and adsorption. We assume that the adsorption term is modeled by Freudlich Isotherm. We provide an approximation of this equation using homotopy-perturbation transformation and solve the resulting linear equations analytically by homotopy-perturbation method. Graphs are plotted using the solution obtained from the method and the results are presented, discussed and interpreted. The research findings show that the concentration increases with time and decreases as distance increases.Item Comparative Analysis of a Non-Reactive Contaminant Flow Problem for Constant Initial Concentration in Two Dimensions by Homotopy-Perturbation and Variational Iteration Methods.(Pacific Journal of Science and Technology, 2013-05-10) JIMOH, OMANANYI RAZAQIn this paper, we present a comparative analysis of non-reactive contaminant flow problem for constant initial concentration in two dimensions by homotopy-perturbation and Variational Iteration method. We provide an approximation of this equation using homotopy-perturbation transformation and solve the resulting linear equations analytically by homotopy-perturbation method (HPM) and Variational Iteration Method (VIM). Graphs are plotted using the solution obtained from the method and the results are presented and discussed.Item Computational Analysis of a one-dimensional nonlinear reactive contaminant flow with an initial continuous point source by homotopy-perturbation method.(Journal of the Nigerian Association of Mathematical Physics, 2012-11-05) Aiyesimi, Y. M.; JIMOH, OMANANYI RAZAQIn this paper, a Homotopy-perturbation analysis of a non–linear reactive contaminant flow equation with initial continuous point source is provided. The equation is described by advection, diffusion and adsorption. We assume that the adsorption term is modeled by Freudlich Isotherm. We provide an approximation of this equation using homotopy-perturbation transformation and solve the resulting linear equations analytically. The graphs of the concentration against the distance, reaction parameter and time are presented and analyzed to determine the effects of increase in the reaction coefficient, time and distance on the concentration. Findings from this research show that the concentration of the contaminant decreases with time and decreases faster when the value of the reaction parameter α is high.Item Semi-analytical Study of a One-dimensional Contaminant Flow in a Finite Medium(Journal of Applied Science Environmental Management (JASEM), 2017-05-21) JIMOH, OMANANYI RAZAQ; AIYESIMI, YM; JIYA, M.; BOLARIN, GAThe Bubnov-Galerkin weighted residual method was used to solve a onedimensional contaminant flow problem in this paper. The governing equation of the contaminant flow, which is characterized by advection, dispersion and adsorption was discretized and solved to obtain the semi-analytical solution. The adsorption isotherm was assumed to be of Freudlich type. The results obtained were expressed in graphical form to show the effect of change in the parameters on the concentration of the contaminants. From the analysis of the results, it was discovered that the contaminant concentration decreases with increase in the distance from the origin as the dispersion and velocity coefficient decrease.Item Solution of One-Dimensional Contaminant Flow Problem Incorporating the Zero Order Source Parameter by Method of Eigen-Functions Expansion(JOURNAL OF APPLIED SCIENCES AND ENVIROMENTAL MANAGEMENT (JASEM), 2021-10-25) JIMOH, OMANANYI RAZAQ; SHUAIBU, BNA semi – analytical study of a time dependent one – dimensional advection – dispersion equation (ADE) with Neumann homogenous boundary conditions for studying contaminants flow in a homogenous porous media is presented. The governing equation which is a partial differential equation incorporates the advection, hydrodynamic dispersion, first order decay and a zero order source effects in the model formulation. The velocity of the flow was considered exponential in nature. The solution was obtained using Eigen function expansion technique after a suitable transformation. The results which investigate the effect change in the parameters on the concentration were discussed and represented graphically. The study revealed that as the zero order source coefficient increases, the contaminant concentration decreases with time.