Civil Engineering
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/149
Civil Engineering
Browse
2 results
Search Results
Item Production of Pavement Blocks Using Low Density Polyethylene Product Waste(Proceedings of the 4th International Conference (SETIC), School of Environmental Technology, Federal University of Technology, Minna, Nigeria, 2023-01-02) Aboje, A. A.; Abbas, B. A.; Kolo, D. N.; Abubakar, M.; Abdulsalam A. M.Waste sachet water packs cause considerable land pollution in Nigeria. In this research, pavement block was produced using low density polyethylene products waste (sachet water packs) as an alternative binder. The production was achieved by first converting the sachet water packs into pellets and blending it with sandstone in a mass ratio of 8:2 (A), 7:3 (B) and 6:4 (C) sandstone to pellets respectively. The compressive strength, %water absorption and curing time tests were carried out on the pavement block to determine it suitability and safety for low-traffic use. The compressive strength for polymer concrete samples A, B and C were 13.65N/mm2 , 16.99N/mm2 and 20.34N/mm2 respectively. After carrying out the %water absorption test on the polymer concrete A, B and C the following result was obtained: 8.33%, 5.47% and 4.03% respectively. It should be noted that the polymer concrete samples and the control samples which (are cement concrete based) are for light-traffic use (pedestrian, plazas, shopping complexes ramps, car parks, office drive ways, rural roads with low traffic, and residential road).Item Reliability Studies on Reinforced Concrete Column Subjected to Axial Load with Natural Stone as Coarse Aggregate(Nnamdi Azikiwe University Journal of Civil Engineering (NAUJCVE), 2024-01-02) Kolo, D. N.; Aguwa, J. I.; Abubakar, M.This paper presents the reliability assessment of a reinforced concrete column subjected to Axial loading. Locally available natural aggregate (NA) was used in concrete production, the results of preliminary tests revealed the aggregate was adequate for concrete production. A typical column cross section of 230 × 240 × 3000mm was adopted and probabilistically assessed. First Order Reliability Method (FORM) was employed to estimate the implied probabilities of failures. The results of the sensitivity analysis showed that the reinforced concrete column is structurally safe at length, breadth and depth of 3200, 240 and 230 mm with Probability of Failures of 1.14 ×10-3, 8.45 × 10-4 and 8.45 × 10-4 respectively.