Industrial Mathematics

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/94

Industrial Mathematics

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Mathematical model for the dynamics of COVID-19 Pandemic Incorporating Isolation and Non-Linear Recovery Rate
    (ISEP Porto-Portugal, 2024-06-22) N. I. Akinwande; T. T. Ashezua; S. A. Somma; O. N. Abdurrahman; F. A. Oguntolu; O. M. Adetutu; R. I. Gweryina; R. O. Olayiwola; T. P. Adajime; F. A. Kuta; S. Abdulrahman; A. I. Enagi; G. A. Bolarin; M. D. Shehua; A. Usman.
    COVID-19 has in recent times created a major health concern in both developed and developing parts of the world. In this wise, there is every need to theoretically explore ways that will provide some insights into curtailing the spread of the disease in the population. In this paper, we present a population model for COVID-19 pandemic incorporating isolation and nonlinear recovery rate. The reproduction number was obtained using the next generation method. The disease-free equilibrium (DFE) of the model (1) was found to be locally and globally asymptotically stable whenever the associated reproduction number is less than unity. Results from the sensitivity analysis of the model, using the reproduction number, RC show that the top parameters that largely drive the dynamics of COVID-19 in the population are COVID-19 transmission rate and the proportion of individuals progressing to the class of reported symptomatic infectious individuals. Numerical simulations of the model shows that increasing the recovery rate of infected patients in the population will lead to an initial decrease in the number of hospitalized patients before subsequent increase. The reason for this could be attributed to the number of unreported symptomatic infectious individuals who are progressing to reported symptomatic infectious stage of infection for immediate isolation.
  • Item
    Mathematical model of COVID-19 in Nigeria with optimal control
    (Elsevier BV, 2021-09) Adesoye Idowu Abioye; Olumuyiwa James Peter; Hammed Abiodun Ogunseye; Festus Abiodun Oguntolu; Kayode Oshinubi; Abdullahi Adinoyi Ibrahim; Ilyas Khan
    The novel Coronavirus Disease 2019 (COVID-19) is a highly infectious disease caused by a new strain of severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). In this work, we proposed a mathematical model of COVID-19. We carried out the qualitative analysis along with an epidemic indicator which is the basic reproduction number () of this model, stability analysis of COVID-19 free equilibrium (CFE) and Endemic equilibrium (EE) using Lyaponuv function are considered. We extended the basic model into optimal control system by incorporating three control strategies. These are; use of face-mask and hand sanitizer along with social distancing; treatment of COVID-19 patients and active screening with testing and the third control is prevention against recurrence and reinfection of humans who have recovered from COVID-19. Daily data given by Nigeria Center for Disease Control (NCDC) in Nigeria is used for simulation of the proposed COVID-19 model to see the effects of the control measures. The biological interpretation of this findings is that, COVID-19 can be effectively managed or eliminated in Nigeria if the control measures implemented are capable of taking or sustaining the basic reproductive number to a value below unity. If the three control strategies are well managed by the government namely; NCDC, Presidential Task Force (PTF) and Federal Ministry of Health (FMOH) or policymakers, then COVID-19 in Nigeria will be eradicated.
  • Item
    Mathematical model of COVID-19 transmission dynamics incorporating booster vaccine program and environmental contamination
    (Elsevier BV, 2022-11) N.I. Akinwande; T.T. Ashezua; R.I. Gweryina; S.A. Somma; F.A. Oguntolu; A. Usman; O.N. Abdurrahman; F.S. Kaduna; T.P. Adajime; F.A. Kuta; S. Abdulrahman; R.O. Olayiwola; A.I. Enagi; G.A. Bolarin; M.D. Shehu
    COVID-19 is one of the greatest human global health challenges that causes economic meltdown of many nations. In this study, we develop an SIR-type model which captures both human-to-human and environment-to-human-to-environment transmissions that allows the recruitment of corona viruses in the environment in the midst of booster vaccine program. Theoretically, we prove some basic properties of the full model as well as investigate the existence of SARS-CoV-2-free and endemic equilibria. The SARS-CoV-2-free equilibrium for the special case, where the constant inflow of corona virus into the environment by any other means, Ω is suspended (Ω=0) is globally asymptotically stable when the effective reproduction number 𝑅0⁢𝑐<1 and unstable if otherwise. Whereas in the presence of free-living Corona viruses in the environment (Ω>0), the endemic equilibrium using the centre manifold theory is shown to be stable globally whenever 𝑅0⁢𝑐>1. The model is extended into optimal control system and analyzed analytically using Pontryagin's Maximum Principle. Results from the optimal control simulations show that strategy E for implementing the public health advocacy, booster vaccine program, treatment of isolated people and disinfecting or fumigating of surfaces and dead bodies before burial is the most effective control intervention for mitigating the spread of Corona virus. Importantly, based on the available data used, the study also revealed that if at least 70% of the constituents followed the aforementioned public health policies, then herd immunity could be achieved for COVID-19 pandemic in the community.
  • Item
    A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics
    (Elsevier BV, 2023-12) Adesoye Idowu Abioye; Olumuyiwa James Peter; Hammed Abiodun Ogunseye; Festus Abiodun Oguntolu; Tawakalt Abosede Ayoola; Asimiyu Olalekan Oladapo
    This study proposes a fractional-order mathematical model for malaria and COVID-19 co-infection using the Atangana–Baleanu Derivative. We explain the various stages of the diseases together in humans and mosquitoes, and we also establish the existence and uniqueness of the fractional order co-infection model solution using the fixed point theorem. We conduct the qualitative analysis along with an epidemic indicator, the basic reproduction number R0 of this model. We investigate the global stability at the disease and endemic free equilibrium of the malaria-only, COVID-19-only, and co-infection models. We run different simulations of the fractional-order co-infection model using a two-step Lagrange interpolation polynomial approximate method with the aid of the Maple software package. The results reveal that reducing the risk of malaria and COVID-19 by taking preventive measures will reduce the risk factor for getting COVID-19 after contracting malaria and will also reduce the risk factor for getting malaria after contracting COVID-19 even to the point of extinction.
  • Item
    A non-linear differential equation model of COVID-19 and seasonal influenza co-infection dynamics under vaccination strategy and immunity waning
    (Elsevier BV, 2023-12) Rabiu Musa; Olumuyiwa James Peter; Festus Abiodun Oguntolu
    This study presents a mathematical model of the transmission dynamics of COVID-19 and influenza co-infection. The potential impacts of the influenza vaccine only on the co-infection dynamics and the potential impacts of both vaccines on the co-infection dynamics are thoroughly studied. The basic reproduction number for the two diseases using the next-generation matrix approach and the stability of the sub-model is examined. The model assessed the scenario whereby both diseases’ waning immunity occurs concurrently to check the epidemic peaks. The numerical simulation results show that the diseases would continue to be endemic in the population if the immunity waning rates increase. The epidemic peak can be reduced by increasing vaccination and vaccine efficacy rates. The results show that the COVID-19 contact rate significantly increases the epidemic level more than the co-infection contact rate. A similar result was obtained when it was observed that the COVID-19 post-recovery waning rate has more significant effects on the epidemic peak than the co-infection post-recovery waning rate. A possible reason for this counter-intuitive occurrence is that two infections cannot have the same viral load nor the same within-host competitiveness. This means an infectious co-infected person will transmit the infection with the highest within-host competitiveness. Here, it is suspected that COVID-19 has a within-host competitive advantage over influenza in the co-dynamics.