Industrial Mathematics

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/94

Industrial Mathematics

Browse

Search Results

Now showing 1 - 10 of 16
  • Item
    Mathematical model of measles transmission dynamics using real data from Nigeria
    (Informa UK Limited, 2022-05-25) Olumuyiwa James Peter; Mayowa M. Ojo; Ratchada Viriyapong; Festus Abiodun Oguntolu
    Measles is a highly contagious and life-threatening disease caused by a virus called morbillivirus, despite the availability of a safe and cost-effective vaccine, it remains a leading cause of death, especially in children. Measles spreads easily from person to person via infected people's coughs and sneezes. It can also be transmitted through direct contact with the mouth or contaminated surfaces. To have a better knowledge of measles epidemiology in Nigeria, we develop a deterministic mathematical model to study the transmission dynamics of the disease in the population. The boundary of the model solution is performed, both equilibrium points are calculated, and the basic reproduction number ℛ0 is determined. We have proved that when ℛ0<1, the disease-free equilibrium point is both locally and globally stable. When ℛ0>1, the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. We demonstrate the model's effectiveness by using a real-life application of the disease spread in Nigeria. We fit the proposed model using available data from Nigeria Center for Disease Control (NCDC) from January to December 2020 to obtain the best fit, this help us to determine the accuracy of the proposed model's representation to the real-world data. We investigate the impact of vaccination rate and hospitalization of infected individuals on the dynamics of measles in the population. The result shows that the combined control strategies reduce the peak of infection faster than the single control strategy.
  • Item
    Mathematical model for the dynamics of COVID-19 Pandemic Incorporating Isolation and Non-Linear Recovery Rate
    (ISEP Porto-Portugal, 2024-06-22) N. I. Akinwande; T. T. Ashezua; S. A. Somma; O. N. Abdurrahman; F. A. Oguntolu; O. M. Adetutu; R. I. Gweryina; R. O. Olayiwola; T. P. Adajime; F. A. Kuta; S. Abdulrahman; A. I. Enagi; G. A. Bolarin; M. D. Shehua; A. Usman.
    COVID-19 has in recent times created a major health concern in both developed and developing parts of the world. In this wise, there is every need to theoretically explore ways that will provide some insights into curtailing the spread of the disease in the population. In this paper, we present a population model for COVID-19 pandemic incorporating isolation and nonlinear recovery rate. The reproduction number was obtained using the next generation method. The disease-free equilibrium (DFE) of the model (1) was found to be locally and globally asymptotically stable whenever the associated reproduction number is less than unity. Results from the sensitivity analysis of the model, using the reproduction number, RC show that the top parameters that largely drive the dynamics of COVID-19 in the population are COVID-19 transmission rate and the proportion of individuals progressing to the class of reported symptomatic infectious individuals. Numerical simulations of the model shows that increasing the recovery rate of infected patients in the population will lead to an initial decrease in the number of hospitalized patients before subsequent increase. The reason for this could be attributed to the number of unreported symptomatic infectious individuals who are progressing to reported symptomatic infectious stage of infection for immediate isolation.
  • Item
    Modeling and optimal control of monkeypox with cost-effective strategies
    (Springer Science and Business Media LLC, 2022-11-22) Olumuyiwa James Peter; Chinwendu E. Madubueze; Mayowa M. Ojo; Festus Abiodun Oguntolu; Tawakalt Abosede Ayoola
    In this work, we develop and analyze a deterministic mathematical model to investigate the dynamics of monkeypox. We examine the local and global stability of the basic model without control variables. The outcome demonstrates that when the reproduction number , the model’s disease-free equilibrium would be locally and globally asymptotically stable. We further analyze the effective control of monkeypox in a given population by formulating and analyzing an optimal control problem. We extend the basic model to include four control variables, namely preventive strategies for transmission from rodents to humans, prevention of infection from human to human, isolation of infected individuals, and treatment of isolated individuals. We established the necessary conditions for the existence of optimal control using Pontryagin’s maximal principle. To illustrate the impact of different control combinations on the spread of monkeypox, we use the fourth-order Runge–Kutta forward–backward sweep approach to simulate the optimality system. A cost-effectiveness study is conducted to educate the public about the most cost-effective method among various control combinations. The results suggest that, of all the combinations considered in this study, implementing preventive strategies for transmission from rodents to humans is the most economical and effective among all competing strategies.
  • Item
    Modelling and optimal control analysis of Lassa fever disease
    (Elsevier BV, 2020) Olumuyiwa James Peter; Adesoye Idowu Abioye; Festus Abiodun Oguntolu; Titilayo Abimbola Owolabi; Michael Oyelami Ajisope; Abdullaziz Glabe Zakari; Timilehin Gideon Shaba
    Lassa fever is a severe hemorrhagic viral infection whose agents belong to Mastomys natelensis. Generally, humans contract Lassa virus through exposure to food or household products that have been contaminated with the excreta of the infected rodents. Lassa fever is endemic in some West African countries including Nigeria. A basic model is proposed to examine the transmission of the disease. The proposed model is subjected to qualitative study via the theory of differential equations and the threshold quantity that denotes the dominant eigenvalue was derived using next-generation matrix approach. The basic model is further extended to an optimal control model with four controls namely, the fumigation of the environment with pesticide, the use of condom to prevent human to human transmission during sexual activities, early treatment and the use of indoor residual spray. The theory of optimal control was explored to establish the necessary conditions for curtailing the transmission of Lassa fever. Numerical simulation was conducted and the results showed that if the Lassa fever transmission and spread were to be reduced significantly in the endemic region, all the control measures must be taken with all seriousness.
  • Item
    Mathematical model of COVID-19 in Nigeria with optimal control
    (Elsevier BV, 2021-09) Adesoye Idowu Abioye; Olumuyiwa James Peter; Hammed Abiodun Ogunseye; Festus Abiodun Oguntolu; Kayode Oshinubi; Abdullahi Adinoyi Ibrahim; Ilyas Khan
    The novel Coronavirus Disease 2019 (COVID-19) is a highly infectious disease caused by a new strain of severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). In this work, we proposed a mathematical model of COVID-19. We carried out the qualitative analysis along with an epidemic indicator which is the basic reproduction number () of this model, stability analysis of COVID-19 free equilibrium (CFE) and Endemic equilibrium (EE) using Lyaponuv function are considered. We extended the basic model into optimal control system by incorporating three control strategies. These are; use of face-mask and hand sanitizer along with social distancing; treatment of COVID-19 patients and active screening with testing and the third control is prevention against recurrence and reinfection of humans who have recovered from COVID-19. Daily data given by Nigeria Center for Disease Control (NCDC) in Nigeria is used for simulation of the proposed COVID-19 model to see the effects of the control measures. The biological interpretation of this findings is that, COVID-19 can be effectively managed or eliminated in Nigeria if the control measures implemented are capable of taking or sustaining the basic reproductive number to a value below unity. If the three control strategies are well managed by the government namely; NCDC, Presidential Task Force (PTF) and Federal Ministry of Health (FMOH) or policymakers, then COVID-19 in Nigeria will be eradicated.
  • Item
    Fractional order of pneumococcal pneumonia infection model with Caputo Fabrizio operator
    (Elsevier BV, 2021-10) Olumuyiwa James Peter; Abdullahi Yusuf; Kayode Oshinubi; Festus Abiodun Oguntolu; John Oluwasegun Lawal; Adesoye Idowu Abioye; Tawakalt Abosede Ayoola
    In this study, we present the Pneumococcal Pneumonia infection model using fractional order derivatives in the Caputo-Fabrizio sense. We use fixed-point theory to prove the existence of the solution and investigate the uniqueness of the model variables. The fractional Adams-Bashforth method is used to compute an iterative solution to the model. Finally, using the model parameter values to explain the importance of the arbitrary fractional order derivative, the numerical results are presented.
  • Item
    Modelling and optimal control analysis of typhoid fever
    (SCIK Publishing Corporation, 2021-08-19) Tawakalt Abosede Ayoola; Helen Olaronke Edogbanya; Olumuyiwa James Peter; Festus Abiodun Oguntolu; Kayode Oshinubi; Mutiu Lawal Olaosebikan
    In this paper, we formulate a deterministic mathematical model to describe the transmission dynamics of typhoid fever by incorporating some control strategies. In order to study the impact of these control strategies on the dynamics of typhoid fever, the model captures vaccination and educational campaign as control variables. We show that the model is mathematically and epidemiologically well positioned in a biologically feasible region in human populations. We carry out a detailed analysis to determine the basic reproduction number necessary for the control of the disease. The optimal control strategies are used to minimize the infected carriers and infected individuals and the adverse side effects of one or more of the control strategies. We derive a control problem and the conditions for optimal control of the disease using Pontryagin’s Maximum Principle and it was shown that an optimal control exists for the proposed model. The optimality system is solved numerically, the numerical simulation of the model shows that possible optimal control strategies become more effective in the control and containment of typhoid fever when vaccination and educational campaign are combined optimally would reduce the spread of the disease.
  • Item
    Transmission dynamics of Monkeypox virus: a mathematical modelling approach
    (Springer Science and Business Media LLC, 2021-10-15) Olumuyiwa James Peter; Sumit Kumar; Nitu Kumari; Festus Abiodun Oguntolu; Kayode Oshinubi; Rabiu Musa
    Monkeypox (MPX), similar to both smallpox and cowpox, is caused by the monkeypox virus (MPXV). It occurs mostly in remote Central and West African communities, close to tropical rain forests. It is caused by the monkeypox virus in the Poxviridae family, which belongs to the genus Orthopoxvirus. We develop and analyse a deterministic mathematical model for the monkeypox virus. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined. It is shown that the model undergo backward bifurcation, where the locally stable disease-free equilibrium co-exists with an endemic equilibrium. Furthermore, we determine conditions under which the disease-free equilibrium of the model is globally asymptotically stable. Finally, numerical simulations to demonstrate our findings and brief discussions are provided. The findings indicate that isolation of infected individuals in the human population helps to reduce disease transmission.
  • Item
    Mathematical model of COVID-19 transmission dynamics incorporating booster vaccine program and environmental contamination
    (Elsevier BV, 2022-11) N.I. Akinwande; T.T. Ashezua; R.I. Gweryina; S.A. Somma; F.A. Oguntolu; A. Usman; O.N. Abdurrahman; F.S. Kaduna; T.P. Adajime; F.A. Kuta; S. Abdulrahman; R.O. Olayiwola; A.I. Enagi; G.A. Bolarin; M.D. Shehu
    COVID-19 is one of the greatest human global health challenges that causes economic meltdown of many nations. In this study, we develop an SIR-type model which captures both human-to-human and environment-to-human-to-environment transmissions that allows the recruitment of corona viruses in the environment in the midst of booster vaccine program. Theoretically, we prove some basic properties of the full model as well as investigate the existence of SARS-CoV-2-free and endemic equilibria. The SARS-CoV-2-free equilibrium for the special case, where the constant inflow of corona virus into the environment by any other means, Ω is suspended (Ω=0) is globally asymptotically stable when the effective reproduction number 𝑅0⁢𝑐<1 and unstable if otherwise. Whereas in the presence of free-living Corona viruses in the environment (Ω>0), the endemic equilibrium using the centre manifold theory is shown to be stable globally whenever 𝑅0⁢𝑐>1. The model is extended into optimal control system and analyzed analytically using Pontryagin's Maximum Principle. Results from the optimal control simulations show that strategy E for implementing the public health advocacy, booster vaccine program, treatment of isolated people and disinfecting or fumigating of surfaces and dead bodies before burial is the most effective control intervention for mitigating the spread of Corona virus. Importantly, based on the available data used, the study also revealed that if at least 70% of the constituents followed the aforementioned public health policies, then herd immunity could be achieved for COVID-19 pandemic in the community.
  • Item
    Mathematical analysis of a novel fractional order vaccination model for Tuberculosis incorporating susceptible class with underlying ailment
    (International Journal of Modelling and Simulation (Taylor & Francis), 2024-07-10) El-Mesady, A.; Peter, Olumuyiwa James; Omame, Andrew; Oguntolu, Festus Abiodun
    Tuberculosis (TB) is a communicable, airborne infection caused by the bacillus Mycobacterium tuberculosis. Pulmonary tuberculosis (PTB) is the most common presentation, although infection can spread anywhere to cause extra-pulmonary tuberculosis (EPTB). In this paper, a novel fractional order mathematical model is designed for the transmission dynamics of tuberculosis. Uninfected vulnerable individuals are categorized into the following: susceptible with underline ailment and susceptible without underline ailment. The research seeks to qualitatively and quantitatively analyze the proposed model and suggests comprehensive intervention measures for the control of tuberculosis among individuals with underline ailment. Some of the major highlights from the numerical investigation points out that TB vaccination is key to reducing the spread of TB among individuals with underline ailment. Furthermore, efforts to step down the spread of TB through awareness campaigns could significantly reduce the burden of the disease among individuals with co-morbidity.