Industrial Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/94
Industrial Mathematics
Browse
4 results
Search Results
Item Mathematical model of COVID-19 in Nigeria with optimal control(Elsevier BV, 2021-09) Adesoye Idowu Abioye; Olumuyiwa James Peter; Hammed Abiodun Ogunseye; Festus Abiodun Oguntolu; Kayode Oshinubi; Abdullahi Adinoyi Ibrahim; Ilyas KhanThe novel Coronavirus Disease 2019 (COVID-19) is a highly infectious disease caused by a new strain of severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). In this work, we proposed a mathematical model of COVID-19. We carried out the qualitative analysis along with an epidemic indicator which is the basic reproduction number () of this model, stability analysis of COVID-19 free equilibrium (CFE) and Endemic equilibrium (EE) using Lyaponuv function are considered. We extended the basic model into optimal control system by incorporating three control strategies. These are; use of face-mask and hand sanitizer along with social distancing; treatment of COVID-19 patients and active screening with testing and the third control is prevention against recurrence and reinfection of humans who have recovered from COVID-19. Daily data given by Nigeria Center for Disease Control (NCDC) in Nigeria is used for simulation of the proposed COVID-19 model to see the effects of the control measures. The biological interpretation of this findings is that, COVID-19 can be effectively managed or eliminated in Nigeria if the control measures implemented are capable of taking or sustaining the basic reproductive number to a value below unity. If the three control strategies are well managed by the government namely; NCDC, Presidential Task Force (PTF) and Federal Ministry of Health (FMOH) or policymakers, then COVID-19 in Nigeria will be eradicated.Item Fractional order of pneumococcal pneumonia infection model with Caputo Fabrizio operator(Elsevier BV, 2021-10) Olumuyiwa James Peter; Abdullahi Yusuf; Kayode Oshinubi; Festus Abiodun Oguntolu; John Oluwasegun Lawal; Adesoye Idowu Abioye; Tawakalt Abosede AyoolaIn this study, we present the Pneumococcal Pneumonia infection model using fractional order derivatives in the Caputo-Fabrizio sense. We use fixed-point theory to prove the existence of the solution and investigate the uniqueness of the model variables. The fractional Adams-Bashforth method is used to compute an iterative solution to the model. Finally, using the model parameter values to explain the importance of the arbitrary fractional order derivative, the numerical results are presented.Item Modelling and optimal control analysis of typhoid fever(SCIK Publishing Corporation, 2021-08-19) Tawakalt Abosede Ayoola; Helen Olaronke Edogbanya; Olumuyiwa James Peter; Festus Abiodun Oguntolu; Kayode Oshinubi; Mutiu Lawal OlaosebikanIn this paper, we formulate a deterministic mathematical model to describe the transmission dynamics of typhoid fever by incorporating some control strategies. In order to study the impact of these control strategies on the dynamics of typhoid fever, the model captures vaccination and educational campaign as control variables. We show that the model is mathematically and epidemiologically well positioned in a biologically feasible region in human populations. We carry out a detailed analysis to determine the basic reproduction number necessary for the control of the disease. The optimal control strategies are used to minimize the infected carriers and infected individuals and the adverse side effects of one or more of the control strategies. We derive a control problem and the conditions for optimal control of the disease using Pontryagin’s Maximum Principle and it was shown that an optimal control exists for the proposed model. The optimality system is solved numerically, the numerical simulation of the model shows that possible optimal control strategies become more effective in the control and containment of typhoid fever when vaccination and educational campaign are combined optimally would reduce the spread of the disease.Item Transmission dynamics of Monkeypox virus: a mathematical modelling approach(Springer Science and Business Media LLC, 2021-10-15) Olumuyiwa James Peter; Sumit Kumar; Nitu Kumari; Festus Abiodun Oguntolu; Kayode Oshinubi; Rabiu MusaMonkeypox (MPX), similar to both smallpox and cowpox, is caused by the monkeypox virus (MPXV). It occurs mostly in remote Central and West African communities, close to tropical rain forests. It is caused by the monkeypox virus in the Poxviridae family, which belongs to the genus Orthopoxvirus. We develop and analyse a deterministic mathematical model for the monkeypox virus. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined. It is shown that the model undergo backward bifurcation, where the locally stable disease-free equilibrium co-exists with an endemic equilibrium. Furthermore, we determine conditions under which the disease-free equilibrium of the model is globally asymptotically stable. Finally, numerical simulations to demonstrate our findings and brief discussions are provided. The findings indicate that isolation of infected individuals in the human population helps to reduce disease transmission.