Industrial Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/94
Industrial Mathematics
Browse
2 results
Search Results
Item Mathematical model of COVID-19 in Nigeria with optimal control(Elsevier BV, 2021-09) Adesoye Idowu Abioye; Olumuyiwa James Peter; Hammed Abiodun Ogunseye; Festus Abiodun Oguntolu; Kayode Oshinubi; Abdullahi Adinoyi Ibrahim; Ilyas KhanThe novel Coronavirus Disease 2019 (COVID-19) is a highly infectious disease caused by a new strain of severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). In this work, we proposed a mathematical model of COVID-19. We carried out the qualitative analysis along with an epidemic indicator which is the basic reproduction number () of this model, stability analysis of COVID-19 free equilibrium (CFE) and Endemic equilibrium (EE) using Lyaponuv function are considered. We extended the basic model into optimal control system by incorporating three control strategies. These are; use of face-mask and hand sanitizer along with social distancing; treatment of COVID-19 patients and active screening with testing and the third control is prevention against recurrence and reinfection of humans who have recovered from COVID-19. Daily data given by Nigeria Center for Disease Control (NCDC) in Nigeria is used for simulation of the proposed COVID-19 model to see the effects of the control measures. The biological interpretation of this findings is that, COVID-19 can be effectively managed or eliminated in Nigeria if the control measures implemented are capable of taking or sustaining the basic reproductive number to a value below unity. If the three control strategies are well managed by the government namely; NCDC, Presidential Task Force (PTF) and Federal Ministry of Health (FMOH) or policymakers, then COVID-19 in Nigeria will be eradicated.Item Fractional order of pneumococcal pneumonia infection model with Caputo Fabrizio operator(Elsevier BV, 2021-10) Olumuyiwa James Peter; Abdullahi Yusuf; Kayode Oshinubi; Festus Abiodun Oguntolu; John Oluwasegun Lawal; Adesoye Idowu Abioye; Tawakalt Abosede AyoolaIn this study, we present the Pneumococcal Pneumonia infection model using fractional order derivatives in the Caputo-Fabrizio sense. We use fixed-point theory to prove the existence of the solution and investigate the uniqueness of the model variables. The fractional Adams-Bashforth method is used to compute an iterative solution to the model. Finally, using the model parameter values to explain the importance of the arbitrary fractional order derivative, the numerical results are presented.