Civil Engineering

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/74

Civil Engineering

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Partial Replacement of Sand with Sawdust in Concrete Production
    (3rd Biennial Engineering Conference, Federal University of Technology, Minna, May, 2013, 2013) Abdullahi, A.; Abubakar, Mahmud; Afolayan, A.
    The rising costs of building construction in developing countries have been a source of concern to government and private developers. This study investigated the use of sawdust as partial replacement for fine aggregates in concrete production. Sawdust was used to replace fine aggregates from 0% to 50% in steps of 10%. Concrete cubes measuring 150 x 150 x 150mm were cast and their compressive strengths evaluated at 7, 14, 21 and 28 days. Increase in percentage of sawdust in concrete cubes led to a corresponding reduction in compressive strength values. From the results, the optimum sawdust content was obtained at 10% and its corresponding compressive strength at 28 days is 7.41 N/mm2 which falls within the characteristic strength of plain concrete (7 – 10 N/mm2). This concrete cannot be used for structural applications.
  • Item
    EFFECTS OF IRON ORE TAILINGS (IOT) ON THE MECHANICAL PROPERTIES OF CONCRETE
    (Conference Proceedings, 1st Faculty of Engineering and Technology Conference (FETiCON 2023), Jun. 5 - 7, 2023, University of Ilorin, Nigeria, 2023) Balarabe, F.; Abubakar, Mahmud
    A lot of research has shown that iron ore tailings (IOT) is not only a source of pollutant but also has good pozzolanic properties. However, the behaviour of IOT concrete in service is yet to be fully reported. This research investigates the effect of IOT on the mechanical properties of concrete whose fine aggregates is partially replaced with IOT. Fine aggregates content in concrete of mix ratio 1:2:4 of 10 to 40% was replaced with IOT. Young’s modulus and Poisson ratio of the resulting concrete beams were determined by compression test. The results showed that 20% replacement of fine aggregates by IOT in the concrete mix gave the best mechanical properties of the resulting concrete. The Young’s modulus of the concrete was seen to increase by 26.53% when with 20% IOT content when compared to that without IOT. The Poisson ratio at 20% IOT content was seen to also decrease by 61.54% when compared to that without IOT. As such, 20% IOT for fine aggregate content replacement in concrete mix 1:2:4 is recommended for structural uses.
  • Item
    Models to Predict the Fresh and Hardened Properties of Palm Kernel Shell Concrete
    (Malaysian Journal of Civil Engineering, 2022-01-12) Kolo, D. N.; Tsado, T. Y.; Abbas, B. A.; Adamu, H. N.
    Concrete is an assemblage of Cement, aggregates and water, the most frequently used fine aggregate for concrete production is sand sourced from river banks. The continuous exploitation of available granite conventionally used as coarse aggregate in concrete production coupled with rapid infrastructural development has resulted in its scarcity and often high cost. The suitability of utilising Palm Kernel Shell (PKS) as partial replacement for coarse aggregate in concrete production was examined in this paper. Preliminary tests were conducted on all aggregates to determine their suitability for concrete production. Concrete with 5, 10, 15, 20 and 25% PKS-coarse aggregate content was cast with a mix ratio of 1:2:4. The freshly prepared Palm Kernel Shell Concrete (PKSC) was cast in moulds measuring 150 x 150 x 150mm and cured using ponding method. The Compressive strength result shows that an increase in the PKS content results in a decrease in compressive strength of concrete. Linear regression models for the slump and compressive strength of the PKSC were developed and found to be sufficient in predicting the compressive strengths with R2 values of 96% and 92 % respectively.