Civil Engineering
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/74
Civil Engineering
Browse
2 results
Search Results
Item Mechanical Properties of Concrete using Bida Natural Aggregate as Coarse Aggregates(Journal of Research Information in Civil Engineering, 2020-10-10) YUSUF, Abdulazeez; M. Abdullahi; S. Sadiku; J. I. AguwaSignificant volume of concrete is occupied by aggregates. Most of these are obtained from rock fragment which depletes natural resources and thereby distorting the ecosystem. The use of alternative aggregate has the potential of reducing this menace. This paper investigates the slump and strength properties of concrete made by varying Bida Natural Aggregate to total aggregate ratio (BNA/TA). Nine different mixes were prepared for three Water to Cement (W/C) ratios and three BNA/TA ratios while Total Aggregate to Cement ratio (TA/C) was kept constant. Properties of the aggregates were determined and found to be satisfactory for concrete production. Three 150x150x150 mm concrete cubes, three 100x100x500 mm concrete prisms and three 100x200 mm concrete cylinders were produced for W/C of 0.4, 0.5 and 0.6 and BNA/TA of 0.55, 0.6 and 0.65. The compressive strength, flexural strength and splitting tensile strength of the specimens were determined at 28 days curing duration. Test results indicates that the higher the BNA /TA content, the lower the slump of concrete. A combination of BNA/TA of 0.55, W/C of 0.4 and TA/C ratio of 3 gave maximum compressive, flexural and splitting tensile strength of 44.30 N/mm2, 7.60 N/mm2 and 3.42 N/mm2 respectively. It was concluded that BNA can be used in place of crushed granite in concrete production.Item Strength Properties of Concrete Using Terrazzo Waste as Partial Replacement for Cement(Epistemics in Science, Engineering and Technology, 2020-04-10) YUSUF, Abdulazeez; H. O. Aminulai; B. E. MfonCement is regarded as the most expensive concrete ingredient. Reducing the quantity of cement used in concrete with Terrazzo Waste (TW), will reduce the cost of concrete and solve disposal and environmental challenges posed by TW. The effect of partial replacement of cement with TW in concrete was studied. The specific gravity, sieve analysis, water absorption, bulk density and moisture content tests were carried out on the aggregates. A terrazzo waste replacement of 0%, 10%, 20%, 30%, 40% and 50% by weight of cement was used to cast 150 x 150 x 150 mm concrete cubes as well as 500 x 100 x 100 mm concrete prisms. A mix ratio of 1:1.8:2.51 designed for an M30 concrete with water-cement ratio of 0.50 was used for all mixes. The weight of concrete increased with corresponding increase in the content of TW. Compressive and flexural strength tests were conducted on thirty-six (36) cubes and thirty-six (36) prisms after curing by full immersion for 7 and 28 days. The values of compressive strength ranged between 19.88 N/mm² to 37.63 N/m² while the flexural strength obtained range between 3.12 N/mm² and 4.52 N/mm² at 28days of curing. Different percentage replacement of TW satisfied different concrete grade requirement for structural design except for 50% replacement which recorded compressive strength of 19.88 N/mm². An optimum replacement level of %10 was recorded and the concrete is applicable for structural elements in buildings. Second order polynomial equations were developed for predicting compressive and flexural strength of concrete containing TW. Terrazzo waste was therefore recommended for use as a partial replacement for cement in concrete production.