Telecommunication Engineering

Permanent URI for this collectionhttp://repository.futminna.edu.ng:4000/handle/123456789/750

Telecommunication Engineering

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    An Effective Spectrum Handoff Based on Reinforcement Learning for Target Channel Selection in the Industrial Internet of Things
    (MDPI Sensors, 2019-03-21) Oyewobi S. Stephen; Gerhard Hancke; Adnan M. Abu-Mahfouz; Adeiza J. Onumanyi
    The overcrowding of the wireless space has triggered a strict competition for scare network resources. Therefore, there is a need for a dynamic spectrum access (DSA) technique that will ensure fair allocation of the available network resources for diverse network elements competing for the network resources. Spectrum handoff (SH) is a DSA technique through which cognitive radio (CR) promises to provide effective channel utilization, fair resource allocation, as well as reliable and uninterrupted real-time connection. However, SH may consume extra network resources, increase latency, and degrade network performance if the spectrum sensing technique used is ineffective and the channel selection strategy (CSS) is poorly implemented. Therefore, it is necessary to develop an SH policy that holistically considers the implementation of effective CSS, and spectrum sensing technique, as well as minimizes communication delays. In this work, two reinforcement learning (RL) algorithms are integrated into the CSS to perform channel selection. The first algorithm is used to evaluate the channel future occupancy, whereas the second algorithm is used to determine the channel quality in order to sort and rank the channels in candidate channel list (CCL). A method of masking linearly dependent and useless state elements is implemented to improve the convergence of the learning. Our approach showed a significant reduction in terms of latency and a remarkable improvement in throughput performance in comparison to conventional approaches
  • Item
    Enabling a Battery-Less Sensor Node Using Dedicated Radio Frequency Energy Harvesting for Complete Off-Grid Applications
    (MDPI, 2020-10-16) Timothy Miller; Oyewobi S. Stephen; Adnan M. Abu-Mahfouz; Gerhard Hancke
    The large-scale deployment of sensor nodes in difficult-to-reach locations makes powering of sensor nodes via batteries impractical. Besides, battery-powered WSNs require the periodic replacement of batteries. Wireless, battery-less sensor nodes represent a less maintenance-intensive, more environmentally friendly and compact alternative to battery powered sensor nodes. Moreover, such nodes are powered through wireless energy harvesting. In this research, we propose a novel battery-less wireless sensor node which is powered by a dedicated 4 W EIRP 920 MHz radio frequency (RF) energy device. The system is designed to provide complete off-grid Internet of Things (IoT) applications. To this end we have designed a power base station which derives its power from solar PV panels to radiate the RF energy used to power the sensor node. We use a PIC32MX220F32 microcontroller to implement a CC-CV battery charging algorithm to control the step-down DC-DC converter which charges lithium-ion batteries that power the RF transmitter and amplifier, respectively. A 12 element Yagi antenna was designed and optimized using the FEKO electromagnetic software. We design a step-up converter to step the voltage output from a single stage fully cross-coupled RF-DC converter circuit up to 3.3 V. Finally, we use the power requirements of the sensor node to size the storage capacity of the capacitor of the energy harvesting circuit. The results obtained from the experiments performed showed that enough RF energy was harvested over a distance of 15 m to allow the sensor node complete one sense-transmit operation for a duration of 156 min. The Yagi antenna achieved a gain of 12.62 dBi and a return loss of −14.11 dB at 920 MHz, while the battery was correctly charged according to the CC-CV algorithm through the control of the DC-DC converter.