Computer Engineering

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/64

Computer Engineering

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Accessing Imbalance Learning Using Dynamic Selection Approach in Water Quality Anomaly Detection
    (MDPI, 2021) Dogo, E. M.; Nwulu, N. I.; Twala, B.; Aigbavboa, C.
    Automatic anomaly detection monitoring plays a vital role in water utilities’ distribution systems to reduce the risk posed by unclean water to consumers. One of the major problems with anomaly detection is imbalanced datasets. Dynamic selection techniques combined with ensemble models have proven to be effective for imbalanced datasets classification tasks. In this paper, water quality anomaly detection is formulated as a classification problem in the presences of class imbalance. To tackle this problem, considering the asymmetry dataset distribution between the majority and minority classes, the performance of sixteen previously proposed single and static ensemble classification methods embedded with resampling strategies are first optimised and compared. After that, six dynamic selection techniques, namely, Modified Class Rank (Rank), Local Class Accuracy (LCA), Overall-Local Accuracy (OLA), K-Nearest Oracles Eliminate (KNORA-E), K-Nearest Oracles Union (KNORA-U) and Meta-Learning for Dynamic Ensemble Selection (META-DES) in combination with homogeneous and heterogeneous ensemble models and three SMOTE-based resampling algorithms (SMOTE, SMOTE+ENN and SMOTE+Tomek Links), and one missing data method (missForest) are proposed and evaluated. A binary real-world drinking-water quality anomaly detection dataset is utilised to evaluate the models. The experimental results obtained reveal all the models benefitting from the combined optimisation of both the classifiers and resampling methods. Considering the three performance measures (balanced accuracy, F-score and G-mean), the result also shows that the dynamic classifier selection (DCS) techniques, in particular, the missForest+SMOTE+RANK and missForest+SMOTE+OLA models based on homogeneous ensemble-bagging with decision tree as the base classifier, exhibited better performances in terms of balanced accuracy and G-mean, while the Bg+mF+SMENN+LCA model based on homogeneous ensemble-bagging with random forest has a better overall F1-measure in comparison to the other models.
  • Item
    Empirical Comparison of Approaches for Mitigating Effects of Class Imbalances in Water Quality Anomaly Detection
    (IEEE, 2020) Dogo, E. M.; Nwulu, N. I.; Twala, B.; Aigbavboa, C. O.
    Imbalanced class distribution and missing data are two common problems and occurrences in water quality anomaly detection domain. Learning algorithms in an imbalanced dataset can yield an overrated classification accuracy driven by a bias towards the majority class at the expense of the minority class. On the other hand, missing values in data can induce complexity in the learning classifiers during data analysis. These two problems pose substantial challenges to the performance of learning algorithms in real-life water quality anomaly detection problems. Hence, the need for them to be carefully considered and addressed to achieve better performance. In this paper, the performance of a range of several combinations of techniques to deal with imbalanced classes in the context of binary-imbalanced water quality anomaly detection problem and the presence of missing values is extensively compare. The methods considered include seven missing data and eight resampling methods, on ten different learning state-of-the-art classifiers taking into account diversity in their learning philosophies. The different classifiers are evaluated using stratified 5-fold cross-validation, based on three performance evaluation metrics namely accuracy, ROC-AUC and F1-measure. Further experiments are carried out on nineteen variants of homogeneous and heterogeneous ensemble techniques embedded with resampling and missing value strategies during their training phase as well as an optimized deep neural network model. The experimental results show an improvement in the performance of the learning classifiers, especially when dealing with the class imbalance problem (on the one hand) and the incomplete data problem (on the other hand). Furthermore, the neural network model exhibit superior performance when dealing with both problems.