Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Usman, .T."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Simulation of a Wet Cylinder Liner
    (International Journal of Mechanical Engineering, 2019-07-25) Bako, .S.; Usman, .T.; Bori Ige; Nasir, .A.
    This paper presents modeling and simulation of automobile engine wet-cylinder liner. The wet-cylinder liner is a cylindrical vessel in which the piston makes a reciprocating motion. Its function is to retain the working fluid and to guide the piston. The cylinder liners are subjected to high structural and thermal stress which leads to its deterioration and engine failure. This paper aimed at investigating the impact of this structural and thermal stress acting on the cylinder liner. Structural and thermal simulation was carried out using Solidworks (2013) software. The simulation result shows that the wet-cylinder liner is subjected to harmonic vibration during the engine operation due to the stresses acting on it. This vibration leads to the formation of vapour bubbles in the water jacket of the engine which leads to cavitation. This hammering and explosive effect (cavitation) of these bubbles on the cylinder liner is the main causes of pitting and corrosion on the cylinder liner. The steady state and transient thermal analysis shows that the convective cooling of the cylinder liner decreases inversely with time and this leads to accumulation of heat in the automobile engine. This accumulated heat energy is the major causes of high frictional wear, cracking of the cylinder liner and other thermal problems of the engine. However, the simulation results shows that the wet-cylinder liners are subjected to structural and thermal failure, if detailed design and material selection are not properly carried out.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify