Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Umar, B. U."

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A Sensor-Based Data Acquisition System for Soil Parameters to Determine Suitable Crops
    (2023) Abisoye, B. O.; Dogo, E. M.; Umar, B. U.; Mamman, I. Z.
    Soil parameters monitoring is significant in sustainable crop and food production. The standard strategy of soil parameters monitoring in developing and underdeveloped nations uses manual labor, resulting in wrong decisions in soil management. Inaccurate measurements due to sensor miscalibration or low sensor quality can lead to incorrect soil management decisions and negatively impact crop yield and environmental sustainability. Due to the mentioned challenges, this work aims to develop a Sensor-based Data Acquisition System for Soil Parameters that will enable users to observe various soil parameters like temperature, humidity, water level and soil pH. The system was developed using the combination of hardware and software components. The hardware component comprises of sensory and processing parts. The study calibrates sensors using known pH, moisture, and temperature values for specific crops to grow in Nigeria. The system will aid farmers in determining suitable crops for their farmland and increasing crop yield. The system collects data through a network of sensors installed in the soil and wirelessly transmits the data to a cloud-based server. The collected data is then analyzed and visualized in through a web-based dashboard, providing farmers with information about the state of their soil. The performance evaluation of the system was carried out using response time and accuracy. The average response time of the system was 4 seconds, and the percentage error for temperature and humidity readings when compared to weather forecast readings were 8.20% and 5.08%, respectively. The results show that the proposed system can provide accurate and reliable measurements of soil parameters and can be easily deployed and operated by small-scale farmers. Using this system can result in improved crop yields, reduced wastage, and better overall efficiency in agricultural operations.
  • No Thumbnail Available
    Item
    Artificial intelligence model for prediction of cardiovascular disease: An empirical study
    (AccScience Publishing, 2024) Umar, B. U.; Ajao, L. A.; Dogo, E. M.; Ajao, F. J.; Atama, M.
    Cardiovascular disease (CVD) is a disease related to the heart and blood vessels. Prediction of CVD is essential for early detection and diagnosis, which is however compounded by the complex interplay between medical history, physical examination outcomes, and imaging results. While the existing automated systems are fraught with the usage of irrelevant and redundant attributes, artificial intelligence (AI) helps in the identification of potential CVD populations by prediction models. This work aims at developing an AI model for predicting CVD using different classifications of machine learning techniques. The CVD dataset was obtained from the UCI repository containing about 76 cardiac attributes for training in various machine learning models, which include a hybrid of artificial neural network genetic algorithm (ANN-GA), artificial neural network, support vector machine (SVM), K-means, K-nearest neighbor (KNN), and decision tree (DT). The performance of the models was measured in terms of accuracy, means square error, sensitivity, specificity, and precision. The results showed that the hybrid model of ANN-GA performs better with an accuracy of 86.4%, compared to the SVM, K-means, KNN, and DT measured at 84.0%, 59.6%, 79.0%, and 77.8%, respectively. It was observed that the system performs better as the number of datasets increases in the database, with a fewer selection of attributes using genetic algorithm for selection. Thus, the ANN-GA model is recommended for CVD prediction and diagnosis.
  • No Thumbnail Available
    Item
    Blockchain for securing electronic voting systems: a survey of architectures, trends, solutions, and challenges
    (Springer, 2025) Ohize, H. O.; Onumanyi, A. J.; Umar, B. U.; Ajao, L. A.; Isah, R. O.; Dogo, E. M.; Nuhu, B. K.; Olaniyi, O. M.; Ambafi, J. G.; Sheidu, V. B.; Ibrahim, M. M.
    Electronic voting (e-voting) systems are gaining increasing attention as a means to modernize electoral processes, enhance transparency, and boost voters’ participation. In recent years, significant developments have occurred in the study of e-voting and blockchain technology systems, hence reshaping many electoral systems globally. For example, real-world implementations of blockchain-based e-voting have been explored in various countries, such as Estonia and Switzerland, which demonstrates the potential of blockchain to enhance the security and transparency of elections. Thus, in this paper, we present a survey of the latest trends in the development of e-voting systems, focusing on the integration of blockchain technology as a promising solution to address various concerns in e-voting, including security, transparency, auditability, and voting integrity. This survey is important because existing survey articles do not cover the latest advancements in blockchain technology for e-voting, particularly as it relates to architecture, global trends, and current concerns in the developmental process. Thus, we address this gap by providing an encompassing overview of architectures, developments, concerns, and solutions in e-voting systems based on the use of blockchain technology. Specifically, a concise summary of the information necessary for implementing blockchain-based e-voting solutions is provided. Furthermore, we discuss recent advances in blockchain systems, which aim to enhance scalability and performance in large-scale voting scenarios. We also highlight the fact that the implementation of blockchain-based e-voting systems faces challenges, including cybersecurity risks, resource intensity, and the need for robust infrastructure, which must be addressed to ensure the scalability and reliability of these systems. This survey also points to the ongoing development in the field, highlighting future research directions such as improving the efficiency of blockchain algorithms and integrating advanced cryptographic techniques to further enhance security and trust in e-voting systems. Hence, by analyzing the current state of e-voting systems and blockchain technology, insights have been provided into the opportunities and challenges in the field with opportunities for future research and development efforts aimed at creating more secure, transparent, and inclusive electoral processes.
  • No Thumbnail Available
    Item
    The Design and Performance Evaluation of a Wireless Sensor Network Based Irrigation System on Different Soil Types
    (2021) Umar, B. U.; Dogo, E.M.; Nuhu, B. K.; Haq, A. K.; Olaleye, P. T.
    In the Nigerian economy, agriculture plays a very important role, and most of its people depend on it for their livelihood. Agricultural practices in the country are still mainly based on conventional, traditional methods of farming which usually results in wastage of water resources and low production of crops to meet the country's demand. There is a need to transform farming from the traditional way to a more efficient method with optimum water utilization. Irrigation is an assistive measure to salvage the problem of inadequate water for dry season farming. Irrigation consumes a lot of water, time and must be done on a timely basis. The automated irrigation system helps to curb the problem of overwatering and under watering of the land. This research proposed an Arduino-based smart irrigation system using a wireless sensor network to overcome the problem of overwatering, underwatering, and efficient time utilization in farming. The system is implemented using Arduino IDE, Proteus Simulation Tools, and Blynk Platform. The effect of the four-mobile network: MTN, GLO, Airtel and 9mobile on response time for Gidan- Kwano area was evaluated. Testing carried out on the system resulted in a response time of 0.75 seconds for Glo 2G network and 0.45 seconds for Glo 4G network. Less than 1sec in the worst-case scenario. This makes the system effective in terms of time response, thereby eradicate the waste of time that manual system operation poised to irrigation scheduling. Also, the appropriate soil moisture content is maintained, whether it rains or not. This reduces excesses and ensures healthy plant growth, increasing agricultural productivity, and cultivating crops are made possible throughout the year. The system also will help in driving agricultural innovation through the use of IoT.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify