Browsing by Author "Sumit Kumar"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A Mathematical Model Analysis of Meningitis with Treatment and Vaccination in Fractional Derivatives(Springer Science and Business Media LLC, 2022-04-26) Olumuyiwa James Peter; Abdullahi Yusuf; Mayowa M. Ojo; Sumit Kumar; Nitu Kumari; Festus Abiodun OguntoluIn this paper, we develop a new mathematical model based on the Atangana Baleanu Caputo (ABC) derivative to investigate meningitis dynamics. We explain why fractional calculus is useful for modeling real-world problems. The model contains all of the possible interactions that cause disease to spread in the population. We start with classical differential equations and extended them into fractional-order using ABC. Both local and global asymptotic stability conditions for meningitis-free and endemic equilibria are determined. It is shown that the model undergoes backward bifurcation, where the locally stable disease-free equilibrium coexists with an endemic equilibrium. We also find conditions under which the model’s disease-free equilibrium is globally asymptotically stable. The approach of fractional order calculus is quite new for such a biological phenomenon. The effects of vaccination and treatment on transmission dynamics of meningitis are examined. These findings are based on various fractional parameter values and serve as a control parameter for identifying important disease-control techniques. Finally, the acquired results are graphically displayed to support our findings.Item Transmission dynamics of Monkeypox virus: a mathematical modelling approach(Springer Science and Business Media LLC, 2021-10-15) Olumuyiwa James Peter; Sumit Kumar; Nitu Kumari; Festus Abiodun Oguntolu; Kayode Oshinubi; Rabiu MusaMonkeypox (MPX), similar to both smallpox and cowpox, is caused by the monkeypox virus (MPXV). It occurs mostly in remote Central and West African communities, close to tropical rain forests. It is caused by the monkeypox virus in the Poxviridae family, which belongs to the genus Orthopoxvirus. We develop and analyse a deterministic mathematical model for the monkeypox virus. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined. It is shown that the model undergo backward bifurcation, where the locally stable disease-free equilibrium co-exists with an endemic equilibrium. Furthermore, we determine conditions under which the disease-free equilibrium of the model is globally asymptotically stable. Finally, numerical simulations to demonstrate our findings and brief discussions are provided. The findings indicate that isolation of infected individuals in the human population helps to reduce disease transmission.