Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Samuel Abubakar"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A Mathematical Study of Contaminant Transport with First-order Decay and Time-dependent Source Concentration in an Aquifer
    (Universal Journal of Applied Mathematics, 2013-12-10) Rasaq O. Olayiwola; JIMOH, OMANANYI RAZAQ; Abdulhakeem Yusuf; Samuel Abubakar
    A mathematical model describing the transport of a conservative contaminant through a homogeneous finite aquifer under transient flow is presented. We assume the aquifer is subjected to contamination due to the time-dependent source concentration. Both the sinusoidally varying and exponentially decreasing forms of seepage velocity are considered for the purposes of studying seasonal variation problems. We use the parameter-expanding method and seek direct eigenfunctions expansion technique to obtain analytical solution of the model. The results are presented graphically and discussed. It is discovered that the contaminant concentration decreases along temporal and spatial directions as initial dispersion coefficient increases and initial groundwater velocity decreases. This concentration decreases as time increases and differs at each point in the domain.
  • No Thumbnail Available
    Item
    Bifurcation Analysis on the Mathematical Model of Measles Disease Dynamics
    (Horizon Research Publishing Co., Ltd., 2013-12) Samuel Abubakar; Ninuola Ifeoluwa Akinwande; Sirajo Abdulrahman; Festus Abiodun Oguntolu
    In this paper we proposed a Mathematical model of Measles disease dynamics. The Disease Free Equilibrium (DFE) state, Endemic Equilibrium (EE) states and the characteristic equation of the model were obtained. The condition for the stability of the Disease Free equilibrium state was obtained. We analyze the bifurcation of the Disease Free Equilibrium (DFE) and the result of the analysis was presented in a tabular form.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify