Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
  1. Home
  2. Browse by Author

Browsing by Author "S. A. Somma"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Local Stability Analysis of a River Blindness Disease Model with Control
    (The Pacific Journal of Science and Technology, 2018-05) F. A. Oguntolu; G. Bolarin; S. A. Somma; A.O. Bello
    In this paper, a mathematical model to study the dynamics of River Blindness is presented. The existence and uniqueness of solutions of the model were examined by actual solution. The effective reproduction number was obtained using the next generation matrix. The Disease Free Equilibrium (DFE) State was obtained and analysed for stability. It was found that, the DFE State is Locally Asymptotically Stable (LAS) if the effective reproduction number R0 < 1 and unstable if R0 > 1.
  • No Thumbnail Available
    Item
    Modelling fire spread reaction rate in atmospheric-weather condition
    (Science World Journal, 2021-08-11) A. B. Zhiri; R. O. Olayiwola; S. A. Somma; F. A. Oguntolu
    Fire spread in any fire environment is a thing of great concern as wind is arguably the most important weather factor that influences the spread of fire. In this paper, we present equations governing the phenomenon and assume the fire depends on the space variable x . Analytical solution is obtained via perturbation method, direct integration and eigenfunction expansion technique, which depicts the influence of parameters involved in the system. The effect of change in parameters such as Peclet mass number and Equilibrium wind velocity are presented graphically and discussed. The results obtained revealed that both Peclet mass number and Equilibrium wind velocity enhanced oxygen concentration during fire spread.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify