Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Raymond M. Agaku"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    SCAPS-1D ANALYSIS OF NON-TOXIC LEAD-FREE MASnI 3 PEROVSKITE-BASED SOLAR CELL USING INORGANIC CHARGE TRANSPORT LAYERS
    (EAST EUROPEAN JOURNAL OF PHYSICS. 3. 447-455 (2024), 2024-08-19) YUSUF Abubakar Sadiq; Matthew I. Amanyi; Eghwubare Akpoguma; Stephen O. Eghaghe; James Eneye; Raymond M. Agaku; Lilian C. Echebiri; Emmanuel U. Echebiri; Emmanuel O. Ameh; Chinyere I. Eririogu; Nicholas N. Tasie; Anthony C. Ozurumba; Eli Danladi
    Perovskite solar cells (PSCs) have gained a lot of attention due to their high efficiency and low cost. In this research paper, a methylammonium tin iodide (CH3NH3SnI 3) based solar cell was simulated using a one-dimensional solar cell capacitance simulation (SCAPS-1D) tool. The SCAPS-1D tool is based on Poisson and the semiconductor equations. After thorough investigation, the initial device presents the following parameters; power conversion efficiency (PCE)=15.315%, fill factor (FF)=64.580%, current density (Jsc)=29.152 mA/cm 2, and open circuit voltage (Voc)=0.813 V. The effect of absorber and ETL thicknesses were explored systematically. The performance of the simulated device was significantly influenced by the thickness of the absorber and ETL. The optimized absorber thickness was 0.5 μm and the ETL thickness was 0.02 μm, giving rise to an optimized PCE of 15.411%, FF of 63.525%, Jsc of 29.812 mA/cm2, and Voc of 0.814 V. Additionally, the effect of temperature on the optimized device was evaluated and found that it affects the performance of the device. This model shows the prospect of CH3NH3SnI 3 as a perovskite material to produce toxic-free environment-friendly solar cells with high efficiency.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify