Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Olutoye, M. A."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Catalytic Degradation of Polyethylene to Gas Oil using Synthesized Clay Based Copper Modified Catalyst
    (Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2015-04) Babatunde, E. O.; David, I.; Olutoye, M. A.; Akpan U. G.; Eterigho Elizabeth Jumoke
    In this study local clay was pretreated, characterized, modified and used as catalyst for the degradation of low-density polyethylene (LDPE). The raw clay was thermally treated at 800 °C for 4 h in a furnace which was later modified by incorporating copper into it through impregnation method. The functionalities of the catalyst were determined based on their characterization. X-ray diffraction, Fourier transform infrared, scanning electron microscope, X-Ray Florescence and surface area determination were done for both the raw clay and modified catalysts. Characterization of the catalysts revealed that the interaction between CuO/clay formed a synergetic mixed oxides and this is an important factor to its catalytic activity. The product obtained was analysed using Gas Chromatography-Mass Spectrometry and the product was mainly composed of hydrocarbons in the carbon range of C- C, which is the hydrocarbon range of gas oil (diesel) fraction. Also, the data obtained showed that at catalyst loading of 1.0 g, 5.0 g of polyethylene feedstock and reaction temperature of 250 °C, the yield of gas oil was 50.22%. The catalyst easily separates from the product mixture.
  • No Thumbnail Available
    Item
    Determination of the Kinetic Parameters in Adhesive Production
    (2008) Olutoye, M. A.; Eterigho, E. J.; Agbajelola, D. O.
    This work is aimed at developing a mathematical model to determine the concentration of Hydrogen Sulphide pollutant in air from the gas flare of a refinery. To achieve this, experimental data on concentration of Hydrogen Sulphide from Kaduna refinery and petrochemical company Nigeria were collected and the dispersion model was developed based on Gaussian distribution principle. The simulation of the model was carried out using visual basic programming. It was observed from the simulated result that the gas dispersion model developed for Hydrogen Sulphide showed a remarkable agreement with the dispersion pattern, and agrees with the experimental results with a correlation co efficient of 0.98. Thus, the model can be used to determine the safe distance for human habitation from an industrial area and the refinery in particular.
  • No Thumbnail Available
    Item
    Development of Mathematical Model for the Assessment of Hydrogen Sulphide Pollutant in the Air
    (Journal of Research in Engineering (JRIE), 2008) Olutoye, M. A.; Eterigho, Elizabeth Jumoke
    This work is aimed at developing a mathematical model to determine the concentration of Hydrogen Sulphide pollutant in air from the gas flare of a refinery. To achieve this, experimental data on concentration of Hydrogen Sulphide from Kaduna refinery and petrochemical company Nigeria were collected and the dispersion model was developed based on Gaussian distribution principle. The simulation of the model was carried out using visual basic programming. It was observed from the simulated result that the gas dispersion model developed for Hydrogen Sulphide showed a remarkable agreement with the dispersion pattern, and agrees with the experimental results with a correlation co efficient of 0.98. Thus, the model can be used to determine the safe distance for human habitation from an industrial area and the refinery in particular.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify