Browsing by Author "Muhammad R"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item A 4-Step Order (K + 1) Block Hybrid Backward Differentiation Formulae (BHBDF) for the Solution of General Second Order Ordinary Differential Equations(2023-12) Muhammad R; Hussaini AIn this paper, the block hybrid backward differentiation formulae (BHBDF) for the step number 𝑘 = 4 was developed using power series as basis function for the solution of general second order ordinary differential equation. The idea of interpolation and collocation of the power series at some selected grid and off- grid points gave rise to continuous schemes which were further evaluated at those points to produce discrete schemes combined together to form block methods. Numerical problems were solved with the proposed methods and were found to perform effectively.Item A TWO POINT BLOCK HYBRID METHOD FOR SOLVING STIFF INITIAL VALUE PROBLEMS(JOURNAL OF MATHEMATICAL SCIENCES, 2011) Muhammad RIn this paper, a self starting hybrid method of order (3, 3,3) is proposed for the solution of stiff initial value problem of the form y' = f(x.y). The continous formation of the integrator enables us to differentiate and evaluate at grid and off grid points. The schemes compared favourably with exact results and results from Okunuga (2008)Item Error and Convergence Analysis of a Hybrid Runge- Kutta Type Method(International Journal of Science and Technology Publications UK, 2015-04) Muhammad R; Y. A Yahaya,; A.S AbdulkareemImplicit Runge- Kutta methods are used for solving stiff problems which mostly arise in real life problems. Convergence analysis helps us to determine an effective Runge- Kutta Method (RKM) to use, but due to the loss of linearity in Runge –Kutta Methods and the fact that the general Runge –Kutta Method makes no mention of the differential equation makes it impossible to define the order of the method independently of the differential equation. In this paper, we derived a hybrid Runge -Kutta Type method (RKTM) for 𝑘=1, obtained the order and error constant and convergence analysis of the method.Item Reformulation of Block Implicit Linear Multistep Method into Runge Kutta Type Method for Initial Value Problem(International Journal of Science and Technology Publications UK, 2015-04) Muhammad R; Y.A Yahaya; A.S. AbdulkareemIn this research work, we reformulated the block hybrid Backward Differentiation Formula (BDF) for 𝑘=4 into Runge Kutta Type Method (RKTM) of the same step number for the solution of Initial value problem in Ordinary Differential Equation (ODE). The method can be use to solve both first and second order (special or general form). It can also be extended to solve higher order ODE. This method differs from conventional BDF as derivation is done only onceItem THE ORDER AND ERROR CONSTANT OF A RUNGE-KUTTA TYPE METHOD FOR THE NUMERICAL SOLUTION OF INITIAL VALUE PROBLEM(Federal University Dutsin MA Journal of Sciences (FJS), 2020-06) Muhammad RIn this paper, we examine in details how to obtain the order, error constant, consistency and convergence of a Runge-Kutta Type method (RKTM) when the step number 𝑘 = 2. Analysis of the order, error constant, consistency and convergence will help in determining an effective Runge- Kutta Method (RKM) to use. Due to the loss of linearity in Runge –Kutta Methods and the fact that the general Runge –Kutta Method makes no mention of the differential equation makes it impossible to define the order of the method independently of the differential equation.