Browsing by Author "Kolo D. N."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item APPLICATION OF ARTIFICIAL INTELLIGENCE FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE USING NATURAL AGGREGATE(2nd Annual Seminar of The Nigerian Society of Engineers Bida Branch:, 2023-10-05) Okafor A.; YUSUF, Abdulazeez; Abbas B. A.; Kolo D. N.; Adelasoye J.This seminar presentation explored the application of various artificial intelligence techniques such as Artificial Neural network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) for predicting the compressive strength of concrete using natural aggregates. Twenty-seven different experimental data points which was augmented to 180 data points was used in the study. The ANN, ANFIS and MLR models were developed, trained, tested and validated with the augmented data using MATLAB software. Statistical evaluators like the R2, MSE and the RMSE was used to evaluate the algorithm with the strongest predictive capability. The results obtained from the analysis revealed distinct performance variations among the three AI models studied. Both the ANN and ANFIS models consistently demonstrated superior predictive capabilities compared to the MLR model. The ANN gave R2 of 1, MSE of 8.66e-26 and RMSE 2.94e-13, the ANFIS gave R2 values of 1, MSE of 0.00033 and RMSE of 0.0183 while the MLR reported R2 values of 0.1243, MSE of 85.93 and RMSE of 9.27. The ANN model was adjudged to be the best prediction model for concrete containing natural aggregate based on the performance metrics.Item Effect of Partial Replacement of Fine Aggregate with Sawdust in Light Weight Concrete Production Using Bida Natural Stone as Coarse Aggregate(Proceedings of the 3rd International Engineering Conference, Federal University of Technology Minna, Nigeria, 2019) Alhaji, B.; Abubakar, M.; Yusuf, A.; Oritola, S. F.; Mohammed, S.; Kolo D. N.This study investigated the effect of sawdust as partial replacement for Fine Aggregate in light weight concrete production. Sawdust was used to replace Fine Aggregate from 0% to 40% in steps of 5%. 150 x 150 x 150mm concrete cubes were cast for each replacement level, the concrete was cured and the compressive strengths were determined at 7, 21 and 28days curing period respectively. Increase in percentage of sawdust in concrete stant reduction in the compressive strength values with a corresponding reduction in weight. From the result obtained, 5% replacement of Fine Aggregate with sawdust gave a maximum compressive strength 13.11 N/mm2. It was however concluded that the optimum replacement level of 5% can be used as plain concrete for blinding works.