Browsing by Author "Kolo, M. T.,"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item A comparative study of the radiation dose response of (ZnO)x(TeO2)1-x thin films for high energy X-ray application(ELSEVIER, 2025) M.M. Idris; OLARINOYE, OYELEKE; Kolo, M. T.,; S.O. Ibrahim; U. Rilwanc; M.I. SayyeddThe current research work determines the X-ray radiation effects on the current–voltage (I-V) characteristics of zinc oxide-doped tellurium dioxide thin film as a dosimetric material for X-ray detection and measurement. Five thin-film samples of (ZnO)x(TeO2)1-x (where x =0.0 wt% (D1), 0.2 wt% (D2), 0.4 wt% (D3), 0.6 wt% (D4), and 1.0 wt% (D5)) were prepared with an aqueous solution of zinc acetate dehydrate and tellurium dioxide precursor on a soda-lime glass substrate using the spray pyrolysis technique. XRD study revealed a polycrystalline structure of the films and showed diffraction peaks belonging to paratellurite TeO2 and wurtzite ZnO in all film samples. A peak shift was observed, indicating the presence of ZnO in the TeO2 crystal lattice. FESEM imagery revealed roughness and the film grain size, which decreased when the concentration of ZnO increased. The optical assessment showed superior transparent behavior in the spectrum of visible light and a minor fall in the optical band-gap value when the concentration of ZnO increased. The I-V characteristic obtained for all the thin-film samples showed a linear increase of current as a function of the applied voltages and X-ray doses ranging from 0.0 to 6.0 V and 50–250 cGy, respectively. The I-V characteristic response of the thin-film samples studied were in the order of D3 >D1 >D2 >D4 >D5. The thin films’ dosimetric sensitivity (minimum measurable dose) values were in the range of 0.610–2.180 mAcm2Gy 1 (0.4590–1.6390 mGy) for D1, 0.370–0.940 mAcm2Gy 1 (1.0640–2.7030 mGy) for D2, 0.610–2.280 mAcm2Gy 1 (0.4390–1.6390 mGy) for D3, 0.00200–0.005280 mAcm2Gy 1 (189.3940–357.1430 mGy) for D4, and 0.00040–0.00150 mAcm2Gy 1 (250.0000–666.6670 mGy) for D1. The R2 value (linearity error) of the I-V plots were in the range of 0.879–0.951 (0.0025–0.0057) for D1, 0.966–0.998 (0.0006–0.0025) for D2, 0.869–0.913 (0.0035–0.0065) for D3, 0.860–0.952 (0.000009–0.00005) for D4, and 0.922–0.978 (0.000002–0.000004) for D5. The ZnO-TeO2 thin-film sensor is therefore a candidate material that can be used for miniaturized radiation measuring devices that can be accommodated in smart devices such as smart watches and smart phonesItem Annual Effective Dose Estimation due to Gross Alpha and Beta Activities in Nigerian Bottled Drinking Water(2020) Kolo, M. T.,; OLARINOYE, OYELEKE; SANUSI E; AJAYI M; KADIR A; UMAR S.I; AYEDUN FBackground: Extremely humid, hot and dry climatic conditions of Nigeria has led to an increasing demand for clear and clean portable water supply across the nation. Additionally, the dehydrating traffic situations commonly witnessed in virtually all the major cities in Nigeria has made consumption of bottled water indispensable component of modern life in Nigeria. It is therefore important that the radiological burden incurred by the Nigerian population from ingestion of bottled water be investigated. Materials and Method: Twenty one brands of commercial bottled water regularly consumed in Nigeria were obtained from standard supermarkets and investigated for their gross alpha and gross beta radioactivity. This analysis, as a recommended first step in radio analytical screening, was performed using a gas-free, low background dual phosphor proportional counter. Results: Results of the analysis showed that mean values for gross alpha and gross beta activity concentrations in all the investigated bottled water samples were 15.22±0.93 mBq l-1 and 39.69±1.83 mBq l-1 respectively. These values were below safety limits recommended by the World Health organization. Computed average annual effective dose equivalent for adults, children and infants (lactating age) in Nigeria due to consumption of commercial bottled water were lower than the recommended safeguard of 0.1 mSv for drinking water. Conclusion: The results does not suggest any radiological threat to the health of consumers. However, intermittent monitoring of commercially consumed bottled water is recommended for water quality compliance from radiation safety perspective.Item Artisanal Gold Mining Activity in Northcentral Nigeria and Its Implications: Radiological Approach(2020) GOMINA M; Kolo, M. T.,; OB AWOJOYOGBE; OLARINOYE, OYELEKEItem Assessment of Environmental Background Gamma Radiation Variation in Minna Area of Nigeria(Taylor and Francis, 2024) Adeiza Stephen, A.,; OLARINOYE, OYELEKE; Kolo, M. T.,; Kasim, I.Radiation has been acknowledged to be responsible for deleterious conditions in living tissues. Hence, environmental background gamma radiation (BGR) measurement is crucial from an environmental and health perspective. In this study, due to the absence of comprehensive background gamma radiation data and the increasing numbers of anthropogenic activities that could increase the BGR level, such as where mining activities are active. The BGR in the Minna area of Niger State, Nigeria, was measured and analyzed in this study. In-situ measurement of the background gamma radiation level was carried out using a well-calibrated portable handheld GQ GMC-500 Plus nuclear radiation detector at an elevation of about 1.0m above ground level. global positioning system from Garmin (GPSmap 78s) was adopted for identifying geographical locations. A total of 1172 points were surveyed across the study area for background environmental radiation. The BGR values ranged from 0.102 to 0.147 lSv/h, with an overall mean value of 0.126 lSv/h. The average measured dose rate was more than twice the reported world average value of 0.059 lSv/h. The annual effective dose equivalent (AEDE) for the research area was calculated to be 0.221 mSv/y on average. The mean AEDE is lower than the ICRP recommended limit. This shows that the population of the Minna area is radiologically safe based on the estimated AEDE value. Similarly, the excess lifetime cancer risk (ELCR) value ranged from 0.626�10 0.774±0.09�10 −3 −3 to 0.901�10 −3 mSv/y with a mean value of mSv/y. The mean value of AEDE is below the 0.24 mSv/y permissible limits as recommended by the International Commission on Radiological Protection (ICRP). The mean ELCR value exceeds the average world value of 0.29�10 −3 . Also, the mean organ dose values estimated for the whole body, liver, kidney, testes, bone marrow, ovaries, and lungs are 0.150±0.02, 0.102±0.01, 0.137±0.02, 0.181±0.02, 0.152±0.02, 0.128±0.02 and 0.141±0.02 mSv/y respectively. The differences in the calculated mean of BGR were attributed to natural and human factors. Geological variation is a fundamental factor that influences the changes in BGR. Human activities, mining, building materials, and the use of phosphate fertilizers in agricultural practices are responsible for the differences in BGR. The ELCR implies that terrestrial gamma radiation does not pose any immediate radiological health effects on residents of the area, but there is a tendency for long-term health hazards in the future, such as cancer, due to the dose accumulatedItem ASSESSMENT OF NATURAL RADIOACTIVITY LEVELS AND RADIATION HAZARDS IN THE TERTIARY INSTITUTIONS IN MINNA, NIGER STATE, NIGERIA.(2012-01-15) Kolo, M. T.,; Baba-Kutigi, A. N.,; OLARINOYE, OYELEKE; Sharifat, I.Activity concentrations of natural radionuclides in 30 surface soil samples collected across the three campuses of the two tertiary institutions in Minna, Niger State, Nigeria, were studied and evaluated. This survey was carried out using gamma spectrometric technique which employs NaI(Tl) gamma detector at the Center for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Nigeria. The mean values for the activity of 226Ra, 232Th and 40K were found to be 7.8±1.3Bqkg-1, 29.4±0.9Bqkg-1 and 229.4±1.8Bqkg-1 respectively. The activity profile of the primordial radionuclides in the soil samples investigated showed the existence of low level activity across the three campuses. The mean value of the annual effective dose equivalent obtained from this study is 0.04mSvyr-1, with mean external hazard index of 0.2. These average values fall within the internationally provided safety range for outdoor radiation exposure. The values obtained from this investigation for all the radiation parameters for the studied soil samples showed that none of the campuses investigated pose any significant radiological threat to the public.Item ASSESSMENT OF NATURAL RADIOACTIVITY LEVELS AND RADIATION HAZARDS IN THE TERTIARY INSTITUTIONS IN MINNA, NIGER STATE, NIGERIA.(2012) Kolo, M. T.,; Baba-Kutigi, A. N.,; OLARINOYE, OYELEKE; Sharifat, I.Item Estimation of indoor gamma radiation dose rate from concrete blocks constructed from tin mine tailings.(ELSEVIER, 2023) OLARINOYE, OYELEKE; Kolo, M. T.,; Shittu, H. O., & Anumah, A. S.The use of building materials made from geological sources contributes greatly to the indoor radiation exposure of human. As a result, it is critical for public health that building materials be screened for elevated radionuclide concentrations. This research measures the primordial radionuclide content of concrete blocks derived from mine tailings and also estimates the indoor annual effective dose rate (AEDR) and associated parameters. Furthermore, it presents a simple empirical relationship for evaluating dose rate per unit specific activity due to radionuclides from a wall of arbitrary dimensions. Twelve concrete blocks constructed using tin mine tailings as fine aggregates were collected locally and analyzed for 235U, spectrometry analysis. The concentration of 238 232Th and 40K content using gamma U ranged from 86.29 to 197.73 Bq/kg with a mean of 120.93 Bq/kg. Also, the specific activity of 232Th and 40 K is within the limits: 99.01–353.67 Bq/ kg and 500.71–1021.77 Bq/kg with mean values of 248.31 Bq/kg and 635.10 Bq/kg, respectively. Obtained dose rate per unit specific activity agreed well with data from literature. Using the derived values of dose rate per unit specific activity, the annual effective dose rate (AEDR) obtained from a typical Nigerian room varies significantly from that obtained from equations in referenced documents where a different room configuration was used. The mean AEDR from the realistic Nigerian room (3.6 × 3.6 × 3 m3 ) was higher than the world average value but less than the recommended safety limit of 1 mSvy 1 . Some of the blocks with AEDR more than the safety limits were recommended for use in superficial quantities for building construction. The model derived in this study can be applied to calculate dose rates within any room configuration.Item Evaluation of radioactivity concentration of some selected mineral rocks from Mayo-Belwa Local Government Area of Adamawa State, Nigeria.(DUJOPAS, 2022) Oduh, I. O., Joseph, S. R.,; OLARINOYE, OYELEKE; Kolo, M. T.,Radiation from natural sources is constantly present around people and their surroundings. Natural Occurring Radioactive Materials (NORM) present in rock, soil and underground water are the major sources of this radiation. In this study, radioactivity concentration of 238U, 232Th, and 40K from Ten (10) different Granite (GN), Gneiss (GS), and Migmatite (MG) rocks samples obtained from Mayo Belwa Local Government Area of Adamawa State were evaluated using a well calibrated and shielded Canberra 3 x 3 inch NaI(Tl) detector at the National Institute of Radiation Protection and Research (NIRPR), University of Ibadan. Rock samples were cleaned, pulverised and placed in the detector for counting, and based on standard expressions, the radionuclide content of the granite rock samples were evaluated. The result shows that the activity concentration of 238U, 232Th, and 40K in GN samples varies from 62.44 – 117.67 Bq/kg, 76.59 – 165.58 Bq/kg, and 688.03 – 1472.42 Bq/kg with corresponding mean of 74.59 ± 3.12, 104.41 ± 3.12, and 950.16 ± 3.12 Bq/kg. Activity concentration of 238U, 232Th, and 40K in GS samples ranges from 19.23 – 36.49 Bq/kg, 29.06 – 49.42 Bq/kg, and 310 – 924.21 Bq/kg with corresponding mean of 28.1 ± 5.36Bq/kg, 38.92 ± 6.38 Bq/kg, and 664.21 ±178.14 Bq/kg. Activity concentration of 238U, 232Th, and 40K in MG samples ranges from 32.11 – 74.73 Bq/kg, 40.79 – 105.87 Bq/kg, and 453.34 – 1040.77 Bq/kg with corresponding mean of 50.19 ± 14.35 Bq/kg, 60.50 ± 19.96 Bq/kg, and 714.88 ± 200.37 Bq/kg. The mean activity from this study are higher than the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) global mean of 238U (32 Bq/kg), 232Th (45 Bq/kg), and 40K (420 Bq/kg) in soil and rock samples except for 238U and 232Th in GS samples which are lower than the recommended standards. The results signifies that usage of such rocks as building construction raw materials might pose radiological hazards in the long run. Therefore, mineral content of the rock responsible for the high radionuclide concentration should be investigated.Item High Terrestrial Radiation Level in an Active Tin-Mine at Jos South, Nigeria(2020) ATIPO M; OLARINOYE, OYELEKE; OB AWOJOYOGBE; Kolo, M. T.,Mineral mining and milling can be a source of national economic and technological development. However, mining of minerals has been confirmed to disturb the natural distribution of radioisotopes in the soil, air and water bodies in the biota. In an attempt to evaluate the radiological burden resulting from tin mining activities at Rayfield-Du area of Jos, the background gamma-radiation level in the mine was measured via a well calibrated hand-held dosimeter placed at 1 m above ground level. The mean absorbed dose rate, annual effective dose rate and excess lifetime cancer risk for the mine was 0.83 µSvh-1; 1.44 mSv-1 and 0.005 respectively. Generally, dose rates were higher in the mine pits and processing areas as compared to administrative areas of the mine. The mean measured dose rate and calculated dose parameters for the mine were all high when compared to the regulatory limit for public exposure. The potential of developing radiation-induced health defects as a result of high radiation absorbed dose rate by the miners and dwellers around the mine is highly probable.Item Mechanical properties and radiological implications of replacing sand with waste ceramic aggregate in ordinary concrete.(ELSEVIER, 2024) OLARINOYE, OYELEKE; Kolo, M. T.,; Amuda, D. B., Oche, C. O., Mohammed, B., Alzahrani, J. S., & Al-Buriahi, M. S.The mining of aggregates for the production of concrete creates ecological problems. In this study, the effect of partially replacing sand as fine aggregate (FA) with waste ceramic tiles (WCT) on the density, compressive strength (CS), specific radioactivity of naturally occurring radioactive materials (238U, 232Th, and 40K), and the radiation shielding competence of concrete was investigated. Ordinary concrete samples consisting of cement, fine aggregate (river sand), coarse aggregate (granite), and water were prepared in 50 mm ×50 mm x 50 mm cubical steel moulds. The samples were coded as C-WCT0, C-WCT5, C-WCT10, C-WCT15, C-WCT20, and C- WCT25, representing concrete samples in which the FA component was replaced by 0, 5, 10, 15, 20, and 25% pulverized WCT, respectively. The CS and density of the samples were determined after 7-, 14-, and 28-day curing periods. The gamma spectrometric method was used to determine the specific activity of 238U, 232Th, and 40K using a hyper pure germanium detector. The photon and neutron shielding parameters of the concrete blocks were calculated with the aid of the EPICS2017 cross-section library and relevant standard formulae. The mean CS for each concrete category increase with curing age. The density of the concrete varied from 2213 kg/ m3 to 2488 kg/m3 as the FA replacement level rose to 15%. Using WCT as a partial replacement for FA altered the chemical composition and decreased the specific activities of 238U, 232Th, and 40K, in the concrete samples. C- WCT15 had the best gamma photon and fast neutron absorption features among the concrete samples. The use of WCT as aggregate in concrete production is a sustainable and environmental-friendly way of producing concrete for general civil engineering and shielding applications in medical and other radiation facilities. This study also affirms that using alternative materials with lower specific activity to replace sand is radiologically desirable in reducing the indoor radiation dose of occupants of concrete-based structures. The replacement of 15% sand by WCT produced stronger, radiologically safer, and more effective radiation absorbing concrete.Item NATURAL RADIOACTIVITY IN BOREHOLE WATER OF SOME WARDS IN MINNA, NIGER STATE(2011-01-11) Kolo, M. T.,; Baba-Kutigi A. N.,; OLARINOYE, OYELEKE; Ibrahim. S.28 samples o~ borehole water used for drinking and domestic purposes were sampled from three wards namely Bosso ward (A), Matkunkele ward (B), and Maitumbi ward (C) in Minna city, Niger State. The water samples were analyzed at the Center for Energy Research and Training, CERT, Ahmadu Beilo University Zaria, for their natural radioactivity content, using the Eurisis system-eight-:-channel-gas-filled proportional counter. The results obtained show that none of the samples from the three wards has gross alpha activity higher than the recommended guidelines by World Health Organization (WHO). The beta activity of two samples from ward B and four from ward C, however, shows a little elevation above the recommended screening level for potable water. The elevations notwithstanding, however, the overall results generally show that water from boreholes in the three wards is safe for drinking and other domestic purposes.Item Survey of Gross Alpha and Gross Beta Radioactivity in Sachet water Hawked in Minna, Niger State.(2009) Kolo, M. T.,; Baba-kutugi; OLARINOYE, OYELEKE; Sharifat, I.