Browsing by Author "Jimoh, O. R."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item A Mathematical Study of Contaminant Transport with First-order Decay and Time-dependent Source Concentration in an Aquifer(Universal Journal of Applied Mathematics, 2013-11-05) Olayiwola, R. O.; Jimoh, O. R.; Yusuf, A.; Abubakar, SamuelA mathematical model describing the transport of a conservative contaminant through a homogeneous finite aquifer under transient flow is presented. We assume the aquifer is subjected to contamination due to the time-dependent source concentration. Both the sinusoidally varying and exponentially decreasing forms of seepage velocity are considered for the purposes of studying seasonal variation problems. We use the parameter-expanding method and seek direct eigenfunctions expansion technique to obtain analytical solution of the model. The results are presented graphically and discussed. It is discovered that the contaminant concentration decreases along temporal and spatial directions as initial dispersion coefficient increases and initial groundwater velocity decreases. This concentration decreases as time increases and differs at each point in the domain.Item Approximate Solution of SIR Infectious Disease Model Using Homotopy Pertubation Method (HPM).(Pacific Journal of Science and Technology, 2013-11-20) Abubakar, Samuel; Akinwande, N. I.; Jimoh, O. R.; Oguntolu, F. A.; Ogwumu, O. D.In this paper we proposed a SIR model for general infectious disease dynamics. The analytical solution is obtained using the Homotopy Perturbation Method (HPM). We used the MATLAB computer software package to obtain the graphical profiles of the three compartments while varying some salient parameters. The analysis revealed that the efforts at eradication or reduction of disease prevalence must always match or even supersede the infection rate.Item APPROXIMATE SOLUTIONS FOR MATHEMATICAL MODELLING OF MONKEY POX VIRUS INCORPORATING QUARANTINE CLASS(Transactions of the Nigerian Association of Mathematical Physics, 2021-03-30) Somma, Samuel Abu; Akinwande, N. I.,; Ashezua, T. T.; Nyor, N.; Jimoh, O. R.; Zhiri, A. B.In this paper we used Homotopy Perturbation Method (HPM) and Adomian Decomposition Method (ADM) to solve the mathematical modeling of Monkeypox virus. The solutions of HPM and (ADM) obtained were validated numerically with the Runge-Kutta-Fehlberg 4-5th order built-in in Maple software. The solutions were also presented graphically to give more insight into the dynamics of the monkeypox virus. It was observed that the two solutions were in agreement with each other and also with Runge-Kutta.