Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Isah Kimpa Mohammed"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A review of coating tin oxide electron transport layer for optimizing the performance of perovskite solar cells
    (Chemistry of Inorganic Materials Volume 6, August 2025, 100100, 2025-04-10) YUSUF Abubakar Sadiq; Ahmad Alhaji Abubakar; Isah Kimpa Mohammed; Umaru Ahmadu; Kasim Uthman Isah
    Perovskite solar cells (PSCs) have recently emerged as a transformative technology in the photovoltaic sector, drawing considerable attention due to their rapid advancements in power conversion efficiency (PCE), which now exceeds 26.7 %. This efficiency level places them in direct competition with conventional silicon-based solar cells. A key element in ensuring the high performance of PSCs is the charge transport layer (CTL), particularly the electron transport layer (ETL). The ETL plays a crucial role by efficiently collecting photo-generated electrons from the perovskite layer and transferring them to the transparent conductive oxide electrode. Among the ma- terials used for ETLs, tin oxide (SnO 2) stands out for its wide band gap, excellent optical transparency, superior carrier mobility, and remarkable chemical stability. Additionally, SnO2 can be deposited at low temperatures, making it ideal for mass production and adaptable for applications such as flexible devices. Despite its inherent advantages, the overall performance and quality of the ETL, and thus the device itself, are heavily influenced by the fabrication process. This study reviews recent approaches to fabricating SnO 2 ETLs in PSCs, with a focus on optimizing efficiency and long-term stability

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify