Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hancke Gerhard Petrus"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Interference Avoidance Resource Allocation for D2D-Enabled 5G Narrowband Internet of Things
    (IEEE, 2022-06-21) Gbadamosi, Safiu Abiodun,; Hancke Gerhard Petrus; Abu-Mahfouz Adnan M.
    In dense, interference-prone 5G narrowband Internet of Things (NB-IoT) networks, device-to-device (D2D) communication can reduce the network bottleneck. We propose an interference-avoidance resource allocation for D2D-enabled 5G NB-IoT systems that consider the less favorable cell edge narrowband user equipment (NUEs). To reduce interference power and boost data rate, we divided the optimization problem into three subproblems to lower the algorithm’s computational complexity. First, we leverage the channel gain factor to choose the probable reuse channel with better Quality of Service (QoS) control in an orthogonal deployment method with channel state information (CSI). Second, we used a bisection search approach to determine an optimal power control that maximizes the network sum rate, and third, we used the Hungarian algorithm to construct a maximum bipartite matching strategy to select the optimal pairing pattern between the sets of NUEs and the D2D pairs. According to numerical data, the proposed approach increases the 5G NB-IoT system’s performance in terms of D2D sum rate and overall network signal-to-interference plus noise ratio (SINR). The D2D pair’s maximum power constraint, as well as the D2D pair’s location, pico-base station (PBS) cell radius, number of potential reuse channels, and D2D pair cluster distance, all influence the D2D pair’s performance. The simulation results demonstrate the efficacy of our proposed scheme.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify