Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ghaniyyat Bolanle Balogun"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Mathematical model on the transmission dynamics of leptospirosis in human and animal population with optimal control strategies using real statistical data
    (Springer Science and Business Media LLC, 2024-12-07) Festus Abiodun Oguntolu; Olumuyiwa James Peter; Benjamin Idoko Omede; Ghaniyyat Bolanle Balogun; Tawakalt Abosede Ayoola
    Leptospirosis poses a significant public health challenge, with a growing incidence in both human and animal populations. The complex interplay between reservoir hosts, environmental factors, and human activities complicates efforts to curb the spread of the disease. Consequently, this paper presents a deterministic mathematical model for the transmission dynamics of leptospirosis within the intertwined human and animal populations. A comprehensive examination of the model revealed that the disease-free equilibrium is globally asymptotically stable when the basic reproduction number is below one. Utilizing center manifold theory, we demonstrated that the Leptospirosis model displays forward bifurcation. Consequently, the epidemiological significance of this forward bifurcation suggests that eradicating leptospirosis from the community is feasible, provided the reproduction number remains below one. We conducted a sensitivity analysis on the basic reproduction number of Leptospirosis to identify parameters that contribute positively to the disease’s spread. Furthermore, We validated our Leptospirosis model by fitting it with confirmed cases reported in Kerala State, India, covering the period from January 2021 to December 2022. This calibration process ensures the model’s accuracy and reliability in reflecting real-world epidemiological dynamics within the specified region and timeframe. In addition, we enhanced the Leptospirosis model by incorporating three time-dependent control measures. These controls encompass the vaccination of animals, environmental sanitation, and preventive actions such as using hand gloves and goggles when handling animals, as well as wearing rubber boots during periods of flooding or heavy rainfall. Results obtained from numerical simulations indicate that implementing the vaccination of animals as a standalone control strategy has no discernible effect on the number of infected humans or the bacteria population. However, when the three time-dependent control measures are combined, there is a substantial and meaningful impact on reducing the number of infected humans, infected animals, and the overall bacteria population within a relatively short timeframe. This underscores the effectiveness of the integrated approach in mitigating the spread of leptospirosis across both human and animal populations.
  • No Thumbnail Available
    Item
    Mathematical Modeling on the Transmission Dynamics of Diphtheria with Optimal Control Strategies
    (Department of Mathematics, Universitas Negeri Gorontalo, 2025-03-29) Festus Abiodun Oguntolu; Olumuyiwa James Peter; Benjamin Idoko Omede; Ghaniyyat Bolanle Balogun; Aminat Olabisi Ajiboye; Hasan S. Panigoro
    Diphtheria is an acute bacterial infection caused by Corynebacterium diphtheriae, characterized by the formation of a pseudo-membrane in the throat, which can lead to airway obstruction and systemic complications. Despite the availability of effective vaccines, diphtheria remains a significant public health concern in many regions, particularly in areas with low immunization coverage. In this study, we formulated and rigorously analyzed a deter ministic epidemiological mathematical model to gain insight into the transmission dynamics of Diphtheria infection, incorporating the concentration of Corynebacterium Diphtheriae in the environment. The analysis of the model begins with the computation of the basic reproduction number and the examination of the local stability of the disease-free equilibrium using the Routh-Hurwitz criterion. An in-depth analysis of the model reveals that the model undergoes the phenomenon of backward bifurcation. This characteristic poses significant hurdles in effectively controlling Diph theria infection within the population. However, under the assumption of no re-infection of Diphtheria infection after recovery, the disease-free equilibrium point is globally asymptotically stable whenever the basic reproduction num ber is less than one. Furthermore, the sensitivity analysis of the basic reproduction number was carried out in order to determine the impact of each of the model basic parameters that contribute to the transmission of the disease. Utilizing the optimal control theory to effectively curb the spread of Diphtheria, We introduced two time dependent control measures, to mitigate the spread of Diphtheria. These time dependent control measures represent preventive actions, such as public enlightenment campaign to sensitize and educate the general public on the dynamics of Diph theria and proper personal hygiene which includes regular washing of hands to prevent susceptible individuals from acquiring Diphtheria, and environmental sanitation practices such as cleaning of surfaces and door handle to reduced the concentration of Corynebacterium diphtheriae in the environment. The results from the numerical simulations reveal that Diphtheria infection can successfully be controlled and mitigated within the population if we can increase the vaccination rate and the decay rate of Corynebacterium Diphtheriae in the environment, as well as properly and effectively implementing these optimal control measures simultaneously.
  • No Thumbnail Available
    Item
    Modeling tuberculosis dynamics with vaccination and treatment strategies
    (Elsevier BV, 2025-03-19) Olumuyiwa James Peter; Dipo Aldila; Tawakalt Abosede Ayoola; Ghaniyyat Bolanle Balogun; Festus Abiodun Oguntolu
    Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, worsened by the emergence of drug-resistant strains. The implementation of vaccination and observed treatment still becomes the most popular intervention in many countries. This study develops a mathematical model to analyze TB dynamics by considering the impact of integrated intervention vaccination and treatment strategy, and also taking into account the possibility of treatment failure and drug–resistant. The model constructed by dividing the population into six compartments: susceptible S, vaccinated V, latent L, active TB (I), drug-resistant TB Dr, and recovered R. Through a mathematical analysis of the dynamical properties of the proposed model, we demonstrated that the disease-free equilibrium point is always locally asymptotically stable when the basic reproduction number is less than one and unstable when it exceeds one. Moreover, the endemic equilibrium point is shown to exist uniquely only when the basic reproduction number is greater than one, and once it exists, it is always locally stable. For better visualization of the stability properties, we perform continuation simulations to generate a bifurcation diagram of our model, utilizing various bifurcation parameters. The Partial Rank Correlation Coefficient (PRCC) approach is used to carry out sensitivity analyses to determine the most sensitive parameters to the disease control. Simulation results show that increased vaccination rates efficiently reduce the susceptible population to increase the vaccinated population, decreasing disease transmission and lowering the burden of active and drug-resistant tuberculosis. Recovery rates after second-line treatment have a substantial impact on the dynamics of drug-resistant tuberculosis. Higher recovery rates result in faster rises in the recovered population and improved disease control. The findings emphasize the need for integrated measures, such as vaccination campaigns and enhanced treatment procedures, to reduce tuberculosis incidence, minimize drug resistance, and improve public health outcomes. These findings lay the groundwork for enhancing tuberculosis control programs, especially in countries with limited resources.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify