Browsing by Author "G. Bolarin"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item A decomposition approach for magnetohydrodynamics stagnation point flow over an inclined shrinking/stretching sheet with suction/injection(International Journal of Mathematical Analysis and Modelling, 2023-09-27) A. Yusuf; G. Bolarin; F. A. Oguntolu; M. Jiya; Y. M. AiyesimiIn this paper, the approximate solution to Magnetohydrodynamics Stagnation Point Flow over an inclined Shrinking/Stretching Sheet with Suction/injection was analyzed via the Adomian Decomposition. The governing partial differential equations (PDEs) were reduced with the help of similarity variables to non linear coupled ordinary differential equations (ODEs). The effects of various pertinent parameters were presented numerically and graphically. Numerical comparisons were carried out with the existing literature and a good agreement was established. The angle of inclination was found to enhance the velocity profile.Item Local Stability Analysis of a River Blindness Disease Model with Control(The Pacific Journal of Science and Technology, 2018-05) F. A. Oguntolu; G. Bolarin; S. A. Somma; A.O. BelloIn this paper, a mathematical model to study the dynamics of River Blindness is presented. The existence and uniqueness of solutions of the model were examined by actual solution. The effective reproduction number was obtained using the next generation matrix. The Disease Free Equilibrium (DFE) State was obtained and analysed for stability. It was found that, the DFE State is Locally Asymptotically Stable (LAS) if the effective reproduction number R0 < 1 and unstable if R0 > 1.Item Mathematical Modeling of Polio Virus Infection Incorporating Immigration and Vaccination(Faculty of Physical Sciences, University of Ilorin, 2019-12-01) G. Bolarin; I. U. Omatola; A. Yusuf; C. E. Odo; F. A. Oguntolu; M. A. PhilipA deterministic mathematical model for polio infection dynamics with emphasis on immigration and vaccination was formulated and analyzed. We derived the basic reproduction number, of the model formulated. The effective reproduction number was computed using the next generation matrix to enable a qualitative analysis to be carried out on the model. Also, the disease-free equilibrium and endemic equilibrium points were computed. On analyzing the equilibrium points, we found that the disease-free equilibrium point is locally asymptotically stable if and the condition for existence on an Endemic Equilibrium point was also established. More so, numerical simulations showed that vaccination coverage of about 75% would be enough to eradicate polio from the population.