Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Farrow, T. S."

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Assessment of Heavy Metal Contamination on Dumpsite in Kuyi Village, Niger State, Nigeria
    (International Journal of Research in Chemical, Metallurgical and Civil Engineering. (IJRCMCE), 2016) Iyakwari, Joseph; Agbajelola, D. O.; Farrow, T. S.; Eterigho, Elizabeth Jumoke
    Soil samples collected from the dumpsite located in Kuyi village, Minna, Niger State were analyzed for copper (Cu), iron (Fe2+) and manganese (Mn) using Atomic Absorption Spectrometer. Twenty-one (21) sample points both horizontally and vertically (depth) were studied. The results revealed that Mn had the highest concentration (11.6mg/kg) compared to Cu and Fe2+. However, it was observed that a minimal reduction in concentration of each metal along the surface of the dumpsite occurred. Interestingly, the concentration of Fe at all points was relatively high (5.54mg/kg, 4.67mg/kg, 3.99mg/kg and 3.78mg/kg). Based on the Federal Environmental Protection Agency and Land Disposal Restriction Standard Regulation, this metal could have adverse effect on human health, stream and agricultural activities of villagers around the dumpsite.
  • No Thumbnail Available
    Item
    Effect of modification on conventional preparation method for Sulphated Zirconia on the production of Fatty Acid Methyl Ester
    (The Nigerian Society of Chemical Engineers, 2014-11) Eterigho, Elizabeth Jumoke; Farrow, T. S.
    Sulphated zirconia was synthesized using different volume of sulphating agent in order to optimise its catalytic property: (1) in the first case the "conventional" 15 ml H2SO4 to 1g of Zr(OH)4 for impregnation was used in wet-precipitation method and the catalyst designated 'wp' and (2) same procedure but with modification in volume of acid; 2 ml of H2SO4 was used for 1g of Zr(OH)4, 'mw'. The properties of the uncalcined and calcined catalysts were examined by various techniques: EDX, XPS, XRDP, Py-DRIFTS and BET nitrogen adsorption techniques. The sulphur content in the uncalcined ('mwp' and 'wp') catalysts was the s a m e ; 0.07 mol each whereas the calcined catalysts were 0.07 mol and 0.05 mol for 'mwp' and 'wp' respectively. BET surface area was determined to be 65.0 m2/g for wp and 101m2/g for 'mwp'. The effect of the variation of sulphating ageni on the catalyst activity was investigated in catalytic cracking of triglycerides for fatty acid methyl esters. Sulphated zirconia from the modified conventional method was found to perform better than the conventional wet-precipitated sulphated zirconia. Furthermore, 'mwp' retained approximately 74% of its sulphur content after 3 h reaction whereas 'wp' catalysi lost 100% during the reaction as indicated by SEM-EDX. Interesting the results show variation in characterization and in their selectivity to different types of fatty acid methyl esters under the same reaction conditions. The 'mp' catalysi showed higher catalytic activity for methy! ester yield of 40% as well as higher selectivity for saturated methyl esters
  • No Thumbnail Available
    Item
    Harnessing Alternative Technology for the Sustainability of Biodiesel Production
    (Iranica Journal of Energy and Environment, 2016-11-17) Eterigho Elizabeth J.; Farrow, T. S.; Agbajelola, D. O.; Ejejigbe, S. E.; Harvey, A.P.
    Biofuel, a renewable energy is mainly produced by transesterification of fatty acids either in presence of enzyme or catalysts. The transesterification relies on the use of either strong base or strong acid homogeneous catalysts for effective performance; but, homogeneous catalysts are associated with a variety of technical hurdles that limit their use for biodiesel production. Although there have been recent developments in heterogeneous catalysts for biodiesel production via transesterification; the separation of methyl ester (FAMEs) from crude glycerol and alcohol recovery are still major hindrances. A possible alternative could be the use of solid acid catalysts in thermo-catalytic cracking of triglycerides. Sulphated zirconia catalyst was evaluated for thermo-catalytic cracking of triglycerides at a relatively low temperature (270oC) and atmospheric pressure. The catalyst was found to be active toward cracking vegetable oils to methyl esters. The catalyst at this temperature exhibited different selectivity towards formation of saturated and unsaturated methyl esters. The catalyst yield of methyl esters under these conditions was 58% while 80% of the product being unsaturated. This opens up the possibility of controlling the degree of saturation of the methyl ester product by catalyst choice, to produce more or less saturated fuels for different markets. The range of products from gases to middle distillates and the unique selectivity for saturated and unsaturated esters may be a significant process advantage of this form of catalytic cracking. An important long chain unsaturated alcohol (1- Heptatriacotanol) was also identified. The unsaturated alcohol is known as an industrial chemical.
  • No Thumbnail Available
    Item
    Study of the Physical Properties and Biodegradability of Potato-Starch Based Plastics
    (World Congress on Engineering and Computer Science (WCECS 2017) San Francisco, USA, 2017-10-25) Eterigho, Elizabeth J.; Farrow, T. S.; Ejejigbe, Silver E.; Gideon, O. Daniel
    Due to the exceptional growth of environmental menace pollution caused by the disposal of used plastics in the world today, there exist the needs to produce biodegradable plastics from cheap and renewable feed stocks. This research work focuses on the synthesis and characterization of potato starch- based plastics (biodegradable) using polyvinyl alcohol (PVA) as cross linker. PVA was varied in mass ratios of 15, 30, 45 and 80% in the thermoplastic starch (TPS)/PVA blend. Mechanical properties (such as tensile strength, percentage elongation, young modulus) and specific gravity of the blends were studied. The results showed that 80% PVA plastic had the highest tensile strength, elongation and lowest young modulus of 384.47kPa, 347.27%, and 310.10kPa respectively. The specific gravity of the whole blends was 1.2. The elongation at break increases with increasing concentration of PVA, having the least value of 0% and highest value of 481.82% for 15 % and 80 % PVA plastic respectively. In addition, the results obtained showed increase in the values of the properties of the samples with respect to thermal conductivity, acid, base and water resistance with increase in composition of PVA. Biodegradability test was done via soil-burial method and the PVA/TPS blend was noted to be biodegradable
  • No Thumbnail Available
    Item
    Sulphated Zirconia Catalyst Prepared from Solid Sulphates by Non-aqueous Method
    (Iranica Journal of Energy and Environment (IJEE), 2017) Eterigho, Elizabeth J. Eterigho; Farrow, T. S.; Ejejigbe, S. E.
    Non-crystallinesulphated zirconia catalysts were synthesised by a non-aqueous and non-conventional method. The effect of varying the molar ratio of sulphating agent to zirconium source was also investigated. The samples were characterized by X-ray diffraction, Energy Dispersive X-ray (EDX), Infra-red Spectroscopy (IR), X-ray Photoelectron Spectroscopy (XPS). The surface acidity was measured by the Pyridine-DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) technique. The structural and textural properties of the sulphated zirconia were studied. The EDX and XPS profiles suggested that both sulphated zirconia catalysts have similar zirconia and sulphate structures; however, both catalysts were amorphous. Deconvolution of their XPS O 1s spectra showed that the samples contained both oxide oxygen of zirconium and sulphate oxygen, which sample I showed a higher amount of sulphate oxygen. Adsorption of pyridine into the samples indicated that the higher amounts of Brönsted acid sites are presented in sample I with lower amount of sulphate during preparation. This opens up the possibility of controlling the degree and type of active sites on a catalyst by the amount of sulphate used for preparation. Sulphated zirconia catalyst with higher activity properties was achieved via a non-aqueous, environmentally friendly method. The zirconia catalyst has great contribution towards energy production which is used for preparation and transesterification of fatty acids for production of biodiesel

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify