Browsing by Author "Eterigho, Elizabeth Jumoke"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Agriculture by-product: A Source for the Production of Biogas(Asian Journal of Engineering and Technology, 2015-04) Eterigho, Elizabeth Jumoke; Farrow T. S.Agricultural by-products, rice husk and maize bran were used anaerobically in this study to produce biogas. The suitability of these substrates as source of biogas and comparative study of the two substrates were investigated. Various analyses were carried out to determine the ash content, moisture content, volatile solids and fixed carbon content present in each substrate. The biogas produced was analysed using a gas chromatograph and was found to contain oxygen, nitrogen and methane in various proportions. From the results of the analyses, rice husk produced a larger volume of gas than the maize bran, though the maize bran's gas has a higher content of methane than that of rice husk (about 60.90%). The experiment was carried out under mesophilic temperature range and a pH of 6.2 - 7.6Item Alternative Production of Fatty Acid Methyl Esters from Triglycerides using Sulphated Zirconia(Nigerian Journal of Technological Research (NJTR), 2013) Eterigho, Elizabeth Jumoke; Lee, J. G. M.; Harvey, A. P.Sulphated zirconia (SZ) was synthesized using two different methods with the same molar ratio (1:6) of reactants: (1) the direct mixing of ZrOCl.8H20 and (NH4),SO4, designated as SZ,; and (2) via the conventional wet-precipitation method with a molar ratio of l:6 rather than the conventional 15 ml H2SO4 to Ig of Zr(OH)4, denoted by (SZ,). The catalysts physiochemical properties were precisely characterized by FTIR, SEM, X-ray diffraction, EDX, XPS, and Py-DRIFTS techniques. The two methods of preparation with same molar ratio of sulphating agents led to sulphated zirconia that exhibited different morphological and structural properties in terms of specific surface areas, thermal stability, acid sites, and surface sulphate. The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yield of approximately 59% after 3h as compared to SZ, (32%). In addition, the sulphated zirconia, SZ, was selective towards unsaturated esters whereas SZ, was selective towards saturated esters.Item Assessment of Heavy Metal Contamination on Dumpsite in Kuyi Village, Niger State, Nigeria(International Journal of Research in Chemical, Metallurgical and Civil Engineering. (IJRCMCE), 2016) Iyakwari, Joseph; Agbajelola, D. O.; Farrow, T. S.; Eterigho, Elizabeth JumokeSoil samples collected from the dumpsite located in Kuyi village, Minna, Niger State were analyzed for copper (Cu), iron (Fe2+) and manganese (Mn) using Atomic Absorption Spectrometer. Twenty-one (21) sample points both horizontally and vertically (depth) were studied. The results revealed that Mn had the highest concentration (11.6mg/kg) compared to Cu and Fe2+. However, it was observed that a minimal reduction in concentration of each metal along the surface of the dumpsite occurred. Interestingly, the concentration of Fe at all points was relatively high (5.54mg/kg, 4.67mg/kg, 3.99mg/kg and 3.78mg/kg). Based on the Federal Environmental Protection Agency and Land Disposal Restriction Standard Regulation, this metal could have adverse effect on human health, stream and agricultural activities of villagers around the dumpsite.Item Catalytic Cracking of Tryglyceride by Sulphated Zirconia for Fatty Aciud Methyl Ester with High Selectivity(American Institute of Chemical Engineers (AIChE) Annaul Conference meeting, Minneapolis, MN, United State, 2010-07-21) Eterigho, Elizabeth Jumoke; Lee, Jon G. M.; Harvey, Adam P.Conventional wet-precipitation method was used to synthesis sulphated zirconia using two different molar ratios of sulphating agents. (1) the first was using a molar ratio of 1: 45 of ZrOCl2.8H20 impregnated with 1 M H2SO4, (wp) and (2) a molar ratio of 1: 6 was used for the modified conventional wet-precipitation method, (wp). The properties of both catalysts were examined by various techniques: EDX, XPS, FTIR, SEM, XRDP, Py-DRIFTS and BET nitrogen adsorption techniques. The variation in the molar ratio of the sulphating agent used during preparation led to sulphated zirconia that exhibited different properties in terms of specific surface areas, acid sites, thermal stability and surface sulphate. Both catalysts were catalytically active for triglycerides cracking for fatty acid methyl esters in a thermocatalytic reaction. The SZ not only exhibited higher conversion of triglycerides but higher FAMEs yield, approximately 50% after 3 h, as compared to SZ2 (39%). Interestingly, SZ1 was selective towards unsaturated esters whereas SZ2 was towards saturated esters.Item Development of Mathematical Model for the Assessment of Hydrogen Sulphide Pollutant in the Air(Journal of Research in Engineering (JRIE), 2008) Olutoye, M. A.; Eterigho, Elizabeth JumokeThis work is aimed at developing a mathematical model to determine the concentration of Hydrogen Sulphide pollutant in air from the gas flare of a refinery. To achieve this, experimental data on concentration of Hydrogen Sulphide from Kaduna refinery and petrochemical company Nigeria were collected and the dispersion model was developed based on Gaussian distribution principle. The simulation of the model was carried out using visual basic programming. It was observed from the simulated result that the gas dispersion model developed for Hydrogen Sulphide showed a remarkable agreement with the dispersion pattern, and agrees with the experimental results with a correlation co efficient of 0.98. Thus, the model can be used to determine the safe distance for human habitation from an industrial area and the refinery in particular.Item Effect of Modification on Conventional Preparation Method for Sulphated Zirconia on the Production of Fatty Acid Methyl Ester(Asian Journal of Engineering and Technology, 2014-06) Eterigho, Elizabeth Jumoke; Farrow, T. Salome; Ogbuka, P. ChidiSulphated zirconia was synthesized using different volume of sulphating agent in order to optimize its catalytic property: (1) in the first case the “conventional” 15 ml H2SO4 to 1g of Zr(OH)4 for impregnation was used in wet-precipitation method and the catalyst designated ‘wp’ and (2) same procedure but with modification in volume of acid; 2 ml of H2SO4 was used for 1g of Zr(OH)4, ‘mwp’. The properties of the uncalcined and calcined catalysts were examined by various techniques: EDX, XPS, XRDP, Py-DRIFTS and BET nitrogen adsorption techniques. The sulphur content in the uncalcined (‘mwp’ and ‘wp’) catalysts was the same; 0.07 mol each whereas the calcined catalysts were 0.07 mol and 0.05 mol for ‘mwp’ and ‘wp’ respectively. BET surface area was determined to be 65.0 m2/g for wp and 101m2/g for ‘mwp’. The effect of the variation of sulphating agent on the catalyst activity was investigated in catalytic cracking of triglycerides for fatty acid methyl esters. Sulphated zirconia from the modified conventional method was found to perform better than the conventional wet-precipitated sulphated zirconia. Furthermore, ‘mwp’ retained approximately 74 % of its sulphur content after 3 h reaction whereas ‘wp’ catalyst lost 100% during the reaction as indicated by SEM-EDX. Interestingly, the results show variation in characterization and in their selectivity to different types of fatty acid methyl esters under the same reaction conditions. The ‘mwp’ catalyst showed higher catalytic activity for methyl ester yield of 40 % as well as higher selectivity for saturated methyl estersItem Effect of modification on conventional preparation method for Sulphated Zirconia on the production of Fatty Acid Methyl Ester(The Nigerian Society of Chemical Engineers, 2014-11) Eterigho, Elizabeth Jumoke; Farrow, T. S.Sulphated zirconia was synthesized using different volume of sulphating agent in order to optimise its catalytic property: (1) in the first case the "conventional" 15 ml H2SO4 to 1g of Zr(OH)4 for impregnation was used in wet-precipitation method and the catalyst designated 'wp' and (2) same procedure but with modification in volume of acid; 2 ml of H2SO4 was used for 1g of Zr(OH)4, 'mw'. The properties of the uncalcined and calcined catalysts were examined by various techniques: EDX, XPS, XRDP, Py-DRIFTS and BET nitrogen adsorption techniques. The sulphur content in the uncalcined ('mwp' and 'wp') catalysts was the s a m e ; 0.07 mol each whereas the calcined catalysts were 0.07 mol and 0.05 mol for 'mwp' and 'wp' respectively. BET surface area was determined to be 65.0 m2/g for wp and 101m2/g for 'mwp'. The effect of the variation of sulphating ageni on the catalyst activity was investigated in catalytic cracking of triglycerides for fatty acid methyl esters. Sulphated zirconia from the modified conventional method was found to perform better than the conventional wet-precipitated sulphated zirconia. Furthermore, 'mwp' retained approximately 74% of its sulphur content after 3 h reaction whereas 'wp' catalysi lost 100% during the reaction as indicated by SEM-EDX. Interesting the results show variation in characterization and in their selectivity to different types of fatty acid methyl esters under the same reaction conditions. The 'mp' catalysi showed higher catalytic activity for methy! ester yield of 40% as well as higher selectivity for saturated methyl estersItem Evaluation of Catalytic Activity of Synthesized Sulphated Zirconia for Triglyceride Cracking”(8th European Congress of Chemical Engineering. Berlin, Germany, 2011-09-25) Eterigho, Elizabeth Jumoke; Lee, J. G. M.; Harvey, A. PConventional wet-precipitation method was used to synthesis sulphated zirconia using two different molar ratios of sulphating agents. (1) the first was using a molar ratio of 1: 45 of ZrOCl.8H20 impregnated with 1 M H2SO4 (wp) and (2) a molar ratio of 1: 6 was used for the modified conventional wet-precipitation method, (mwp).. The properties of both catalysts were examined by various techniques: EDX, XPS, FTIR, SEM, XRDP, Py-DRIFTS and BET nitrogen adsorption techniques. The variation in the molar ratio of the sulphating agent used during preparation led to sulphated zirconia that exhibited different properties in terms of specific surface areas, acid sites, thermal stability and surface sulphate. Both catalysts were catalytically active for triglycerides cracking for fatty acid methyl esters in a thermocatalytic reaction. The SZI not only exhibited higher conversion of triglycerides but higher FAMEs yield, approximately 50% after 3 h, as compared to SZ2 (39%). Interestingly, SZ1 was selective towards unsaturated esters whereas SZ2 was towards saturated esters.Item Quality Improvement of an Acid Treated Fuel Oil(Leonardo Electronic Journal of Practices and Technologies, 2008-01) Eterigho, Elizabeth Jumoke; Olutoye, M. A.The work on the quality improvement of fuel oil using acid treatment was carried out. The improvement of the fuel oil was done using sulphuric acid to remove contaminants. Sulphuric acid at different concentrations were mixed with the oil and kept at 45°C for four hours in the agitator vessel to allow reaction to take place. Acidic sludge was then drained off from the agitator and the oil was neutralized with sodium hydroxide. Centrifugation operation was used to extract the sulphonate dispersed in the oil. The treated and untreated oils were characterized for various properties and the results showed that the viscosity, total sulphur of fuel oil decreased from 6.0 to before 5.0 cst after acid treatment and 2.57 to 1.2225% w/w respectively while the flash point increased from 248 to 264°F. The water and sediment content increased from trace before to 0.6 after treatment. In addition, the calorific value increased from initial value of 44,368 to 44,805 and 44,715 kJ/kg at 50% and 75% conc. H2SO4 while decreasing with 85% and 90% conc. H2SO4. However, both carbon residue and ash content decreases with an increase in acid concentration.Item Transesterification of waste frying oil to methyl ester using activated Carbon supported Mg-Zn oxide as solid-base catalyst(1st International Engineering Conference (IEC) Federal University of Technology, Minna, Nigeria, 2015) Olutoye, M. A.; Eterigho, Elizabeth Jumoke; Suleiman, B.; Adeniyi, O. D.; Mohammed, I. A.; Musa, U.An activated carbon-supported Mg-Zn catalyst (Mg-Zn/AC) was prepared by using co-precipitation combined with incipient wetness impregnation methods. The catalyst structure was characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR), its microstructure was studied by the use of scanning electron microscopy (SEM)and the catalytic performance toward synthesis of methyl esters from waste frying oil (WFO) was investigated. The properties studied provided insight into the catalytic performance of the catalyst whereby the large surface area and pore volume of the support facilitated the distribution of metal particles and high dispersion of metals. The optimum reaction conditions were obtained by varying parameters such as methanol to oil ratio, catalyst loading, temperature and time. Under the conditions of reaction time of 5 h, temperature, 150 °C and catalyst dosage of 2.5 wt%, the methyl ester yield of >86% was achieved using 64 g of WFO, 38 g of methanol. The results showed that Mg-Zn/AC catalyst presented efficient activity during the transesterification reaction and is a promising heterogeneous catalyst for the production biodiesel fuel from vegetable oil feedstock.Item Triglyceride cracking for biofuel production using a directly synthesised sulphated zirconia catalyst(Journal of Bioresource Technology, 2011-02-13) Eterigho, Elizabeth Jumoke; Lee, J. G. M.; Harvey, Philip A.In this study, sulphated zirconia was directly synthesised and compared to the conventional wet method of preparation. The surface areas and pore sizes were 169 m2/g, 0.61 lm (directly synthesized) and 65 m2/g, 0.24 lm (conventional method), respectively. Directly synthesized sulphated zirconia was amorphous, whereas conventionally prepared sulphated zirconia is polycrystalline. Their IR spectra were broadly similar, although the area of the 1250 to 950 cmÿ1 band was larger for directly synthesised sulphated zirconia. Not only were conversions greater for directly synthesised sulphated zirconia (63% vs. 42% after 4 h), but it exhibited significantly greater yield for fatty acid methyl esters. The percentage yield (after 1 h) of methyl esters was 43% for the directly synthesised catalyst and 15% for the conventionally synthesised