Browsing by Author "Ajao, L. A."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Artificial intelligence model for prediction of cardiovascular disease: An empirical study(AccScience Publishing, 2024) Umar, B. U.; Ajao, L. A.; Dogo, E. M.; Ajao, F. J.; Atama, M.Cardiovascular disease (CVD) is a disease related to the heart and blood vessels. Prediction of CVD is essential for early detection and diagnosis, which is however compounded by the complex interplay between medical history, physical examination outcomes, and imaging results. While the existing automated systems are fraught with the usage of irrelevant and redundant attributes, artificial intelligence (AI) helps in the identification of potential CVD populations by prediction models. This work aims at developing an AI model for predicting CVD using different classifications of machine learning techniques. The CVD dataset was obtained from the UCI repository containing about 76 cardiac attributes for training in various machine learning models, which include a hybrid of artificial neural network genetic algorithm (ANN-GA), artificial neural network, support vector machine (SVM), K-means, K-nearest neighbor (KNN), and decision tree (DT). The performance of the models was measured in terms of accuracy, means square error, sensitivity, specificity, and precision. The results showed that the hybrid model of ANN-GA performs better with an accuracy of 86.4%, compared to the SVM, K-means, KNN, and DT measured at 84.0%, 59.6%, 79.0%, and 77.8%, respectively. It was observed that the system performs better as the number of datasets increases in the database, with a fewer selection of attributes using genetic algorithm for selection. Thus, the ANN-GA model is recommended for CVD prediction and diagnosis.Item Blockchain for securing electronic voting systems: a survey of architectures, trends, solutions, and challenges(Springer, 2025) Ohize, H. O.; Onumanyi, A. J.; Umar, B. U.; Ajao, L. A.; Isah, R. O.; Dogo, E. M.; Nuhu, B. K.; Olaniyi, O. M.; Ambafi, J. G.; Sheidu, V. B.; Ibrahim, M. M.Electronic voting (e-voting) systems are gaining increasing attention as a means to modernize electoral processes, enhance transparency, and boost voters’ participation. In recent years, significant developments have occurred in the study of e-voting and blockchain technology systems, hence reshaping many electoral systems globally. For example, real-world implementations of blockchain-based e-voting have been explored in various countries, such as Estonia and Switzerland, which demonstrates the potential of blockchain to enhance the security and transparency of elections. Thus, in this paper, we present a survey of the latest trends in the development of e-voting systems, focusing on the integration of blockchain technology as a promising solution to address various concerns in e-voting, including security, transparency, auditability, and voting integrity. This survey is important because existing survey articles do not cover the latest advancements in blockchain technology for e-voting, particularly as it relates to architecture, global trends, and current concerns in the developmental process. Thus, we address this gap by providing an encompassing overview of architectures, developments, concerns, and solutions in e-voting systems based on the use of blockchain technology. Specifically, a concise summary of the information necessary for implementing blockchain-based e-voting solutions is provided. Furthermore, we discuss recent advances in blockchain systems, which aim to enhance scalability and performance in large-scale voting scenarios. We also highlight the fact that the implementation of blockchain-based e-voting systems faces challenges, including cybersecurity risks, resource intensity, and the need for robust infrastructure, which must be addressed to ensure the scalability and reliability of these systems. This survey also points to the ongoing development in the field, highlighting future research directions such as improving the efficiency of blockchain algorithms and integrating advanced cryptographic techniques to further enhance security and trust in e-voting systems. Hence, by analyzing the current state of e-voting systems and blockchain technology, insights have been provided into the opportunities and challenges in the field with opportunities for future research and development efforts aimed at creating more secure, transparent, and inclusive electoral processes.Item Bluetooth Assisted Misplaced Object Finder Using DFRobot Arduino Integrated with Android Application(2024) Dogo, E. M.; Emeni, B.; Nuhu, B. K.; Ajao, L. A.Finding lost or misplaced items can be time-consuming and frustrating. Yet, this is common and occurs to many individuals daily and globally. This paper has developed a system that allows users to locate their misplaced or lost items by leveraging the capabilities of Bluetooth technology and a microcontroller-based control system. The DFRobot Bettle BLE Arduino microcontroller is the main component for communication and control. By interfacing the microcontroller with an LED and a buzzer, the system provides visual and auditory signals to assist in locating the target device or item. The search pro-cess is initiated through an Android application, through establishing a Blue-tooth connection between the microcontroller and the target device, permitting the exchange of signals for tracking purposes. When the device is within range, the LED indicator illuminates, and the buzzer produces audible alerts, guiding the user to the device’s location. The application also provides an estimated distance of the object using Bluetooth signal strength. Tests carried out on the system proved its effectiveness in terms of quick response to signals and reliability in both indoor and outdoor environments.Item Development and Implementation of Microcontroller-based Improved Digital Timer and Alarm System(2016) Ajao, L. A.; Adegboye, M. A,; Dogo, E. M.; Aliyu, S. O.; Maliki, D.Time plays an important role in our daily activities, more particularly in sectional events or conference arena where there is need for accurate time management. This paper focuses on the development and implementation of an improved digital timer with audio-visual unit using (PIC16F887) microcontroller chip and other electronics component such as LCD, 7-segment display, LED and buzzer as an I/O device. Thus, the need for this device in our daily activities is to monitor the time scheduled for events, updating and alert the audience using an audio-visual approach. The proposed system allows apt time management and avoids time wastage during seminar presentations and the likes. It particularly helps presenters to be time conscious, thus, making them to naturally adjust such that the allotted time is enough to cover up their presentation. The digital timer and alarm system presented herewith is also of advantage to the physically challenged like the deaf and blind in monitoring their sectional activities and to be fully involved about the event situation. The system was designed in different modules, and all were interfaced together with firmware chip to simplify the mechanism’s fault diagnoses and fault corrections.