Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ajah Victor"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Air Gap Length and Maximum and Minimum Inductance of A Double-Salient Reluctance Machine (DSRM) using The Developed Analytical Algorithm
    (International Journal on Electrical Engineering and Informatics, 2022-03-12) Enesi Asizehi Yahaya; Ajah Victor; Emenike Chinedozi Ejiogu
    In this paper an algorithm is developed to predict the maximum and minimum inductance of an optimized pole arc of a fabricated double salient reluctance machine (DSRM). The developed analytical algorithm investigates the air gap length at the maximum and minimum inductances. These are achieved through the machine rotor pole arc, stator pole arc, bore diameter, back iron thickness, rotor yoke thickness, stack length, and rotor pole diameter. The validity of the newly developed analytical procedures for predicting the maximum and minimum inductances was evaluated using the measurements obtained from the machine prototype. There was a good correlation between the analytical and experimental results. Inductances and air gap lengths of 2/2 DSRM of equal stator and rotor pole width and stator pole width greater than the rotor pole width were investigated and analyzed using the developed algorithm. A second existing DSRM with different numbers of stator and rotor poles whose inductances have been known and compared with finite element analysis (FEA) is chosen to verify the algorithm developed. The 2/2 DSRM’s potential to sustain oscillation during energy conversion from mechanical energy to electrical energy is investigated

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify