Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Abraham Baba Zhiri"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A THIRD REFINEMENT OF JACOBI METHOD FOR SOLUTIONS TO SYSTEM OF LINEAR EQUATIONS
    (Federal University, Dutsin Ma, Nigeria, 2023-10-15) Khadeejah James Audu; James Nkereuwem Essien; Abraham Baba Zhiri; Aliyu Rasheed Taiwo
    Solving linear systems of equations stands as one of the fundamental challenges in linear algebra, given their prevalence across various fields. The demand for an efficient and rapid method capable of addressing diverse linear systems remains evident. In scenarios involving large and sparse systems, iterative techniques come into play to deliver solutions. This research paper contributes by introducing a refinement to the existing Jacobi method, referred to as the "Third Refinement of Jacobi Method." This novel iterative approach exhibits its validity when applied to coefficient matrices exhibiting characteristics such as symmetry, positive definiteness, strict diagonal dominance, and 𝑀 -matrix properties. Importantly, the proposed method significantly reduces the spectral radius, thereby curtailing the number of iterations and substantially enhancing the rate of convergence. Numerical experiments were conducted to assess its performance against the original Jacobi method, the second refinement of Jacobi, and the Gauss-Seidel method. The outcomes underscore the "Third Refinement of Jacobi" method's potential to enhance the efficiency of linear system solving, thereby making it a valuable addition to the toolkit of numerical methodologies in scientific and engineering domains.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify